4.7 Article

New Type of Quantum Criticality in the Pyrochlore Iridates

期刊

PHYSICAL REVIEW X
卷 4, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.4.041027

关键词

-

资金

  1. DOE [DE-FG02-08ER46524]
  2. MRSEC Program of the National Science Foundation [DMR 1121053]
  3. U.S. Department of Energy (DOE) [DE-FG02-08ER46524] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions-quantum critical points-in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据