4.4 Article

Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy

期刊

MOLECULAR BRAIN
卷 4, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1756-6606-4-24

关键词

Multiple system atrophy; copy number variation; phenotypically discordant monozygotic twins; (Src homology 2 domain containing)-transforming protein 2; subtelomere; ataxia; parkinsonism; disease-susceptibility gene

资金

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology
  2. Research Committee for Ataxic Diseases, Japanese Ministry of Health, Labour and Welfare
  3. Matching Program for Innovations in Future Drug Discovery and Medical Care of Japan
  4. Global COE Program of the Japan Society for the Promotion of Science [F03]
  5. Grants-in-Aid for Scientific Research [21591067] Funding Source: KAKEN

向作者/读者索取更多资源

Background: Multiple system atrophy (MSA) is a sporadic disease. Its pathogenesis may involve multiple genetic and nongenetic factors, but its etiology remains largely unknown. We hypothesized that the genome of a patient with MSA would demonstrate copy number variations (CNVs) in the genes or genomic regions of interest. To identify genomic alterations increasing the risk for MSA, we examined a pair of monozygotic (MZ) twins discordant for the MSA phenotype and 32 patients with MSA. Results: By whole-genome CNV analysis using a combination of CNV beadchip and comparative genomic hybridization (CGH)-based CNV microarrays followed by region-targeting, high-density, custom-made oligonucleotide tiling microarray analysis, we identified disease-specific copy number loss of the (Src homology 2 domain containing)-transforming protein 2 (SHC2) gene in the distal 350-kb subtelomeric region of 19p13.3 in the affected MZ twin and 10 of the 31 patients with MSA but not in 2 independent control populations (p = 1.04 x 10(-8), odds ratio = 89.8, Pearson's chi-square test). Conclusions: Copy number loss of SHC2 strongly indicates a causal link to MSA. CNV analysis of phenotypically discordant MZ twins is a powerful tool for identifying disease-predisposing loci. Our results would enable the identification of novel diagnostic measure, therapeutic targets and better understanding of the etiology of MSA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据