4.2 Article

Differential Healing of Full Thickness Rabbit Skin Wound by Fibroblast Loaded Chitosan Sponge

期刊

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jbt.2013.1094

关键词

Wound Healing; Chitosan Skin Graft; Histomorphometry; Re-Epithelialisation; Cell-Proliferation

资金

  1. CSIR
  2. Department of Science and Technology, Government of India [8013]

向作者/读者索取更多资源

For fabricating skin grafts with differential healing properties, enrichment with biomolecules/cells may be desirable. Earlier, we have developed a biomaterial-quality chitosan for biomedical application. Here we evaluated the wound healing potential of the chitosan-preparation and its variant, prepared by loading homologus fibroblast. Dermal fibroblasts isolated from rabbit skin were seeded on chitosan sponge to fabricate a homologous fibroblast loaded chitosan graft (HFLC). Full thickness excision wounds created on the rabbit dorsum were grafted with these two types of the chitosan sponges; naked or non cellular chitosan graft (NCC) and the homologous fibroblast loaded chitosan graft (HFLC). Post-graft skin-wound samples were examined histomorphologically at 7th, 14th and 21st day for evaluating the nature of the tissue reaction induced by the grafts. The wound healing parameters considered were the extent of re-epithelialisation, collagen deposition and angiogenesis, the thickness of epidermis, number of proliferating cells, vimentin positive cells and alpha smooth muscle actin cells. The results suggested that both the grafts aided wound healing but the HFLC induced a differential pattern of healing at 7 and 14 days featured by enhanced angiogenesis, desmoplasia and a hyperkeratotic dermis. Under therapeutic conditions, the HFLC may be useful for regulating the extent of collagen deposition in the early phases of a healing wound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据