4.6 Review

Structural determinants of criticality in biological networks

期刊

FRONTIERS IN PHYSIOLOGY
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2015.00127

关键词

criticality; power laws; hierarchical modular networks; neural networks; gene regulatory networks; evolution; robustness

资金

  1. Spanish Ministry of Economy and Competitiveness [FIS2013-44674-P, FIS2012-37655-C02-01]
  2. FEDER
  3. ICREA Academia programme
  4. Army Research Office [W911NF-04-D-0001]
  5. ICREA Funding Source: Custom

向作者/读者索取更多资源

Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据