4.7 Article

Exploring the Heterologous Genomic Space for Building, Stepwise, Complex, Multicomponent Tolerance to Toxic Chemicals

期刊

ACS SYNTHETIC BIOLOGY
卷 3, 期 7, 页码 476-486

出版社

AMER CHEMICAL SOC
DOI: 10.1021/sb400156v

关键词

heterologous and metagenomic spaces; genomic libraries; biofuels; heat shock proteins; complex phenotypes

资金

  1. National Science Foundation [CBET-0756451]

向作者/读者索取更多资源

Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses both improved cell viability and growth under chemical stress. Building upon the success of our recently reported semisynthetic stress response system expressed off plasmid pHSP (Heat Shock Protein), we probed the genomic space of the solvent tolerant Lactobacillus plantarum to identify genetic determinants that impart solvent tolerance in combination with pHSP. Using two targeted enrichments, one for superior viability and one for better growth under ethanol stress, we identified several beneficial heterologous DNA determinants that act synergistically with pHSP. In separate strains, a 209% improvement in survival and an 83% improvement in growth over previously engineered strains based on pHSP were thus generated. We then developed a composite phenotype of improved growth and survival by combining the identified L. plantarum genetic fragments. This demonstrates the concept for a sequential, iterative assembly strategy for building multigenic traits by exploring the synergistic effects of genetic determinants from a much broader genomic space. The best performing strain produced a 3.7-fold improved survival under 8% ethanol stress, as well as a 32% increase in growth under 4% ethanol. This strain also shows significantly improved tolerance to n-butanol. Improved solvent production is rarely examined in tolerance engineering studies. Here, we show that our system significantly improves ethanol productivity in a Melle-Boinot-like fermentation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据