4.5 Review

Anodes for Carbon-Fueled Solid Oxide Fuel Cells

期刊

CHEMELECTROCHEM
卷 3, 期 2, 页码 193-203

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/celc.201500420

关键词

anodes; carbon; electrochemical energy conversion; kinetics; solid oxide fuel cells

向作者/读者索取更多资源

Solid oxide fuel cells (SOFCs) have been considered as one of the most promising technologies for high-efficiency electrical energy generation using a variety of fuels, including hydrogen, natural gas, biogas, carbon monoxide, liquid hydrocarbons and solid carbon. Carbon-fueled SOFCs (CF-SOFCs) potentially have the highest volume power density because solid carbon has a fuel energy density of 23.95kWhL(-1), which is approximately 10 times higher than that of liquid hydrogen. However, the reactivity and fluid mobility of carbon is significantly lower than those of gaseous fuels; thus, CF-SOFCs will be kinetically limited at the anode. Herein, we review the development of anodes in CF-SOFCs from the perspective of material compositions and microstructures. Challenges and research trends based on the fundamental understanding of the materials science and engineering for anode development in CF-SOFCs are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据