4.7 Article

Simultaneous weak measurement of non-commuting observables: a generalized Arthurs-Kelly protocol

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-33562-0

关键词

-

资金

  1. Israel-US Binational Science Foundation
  2. German Research Foundation (DFG) [TH 820/11-1]
  3. U.S. National Science Foundation [CHE1665291]
  4. University of Pennsylvania
  5. DFG [SFB 767]
  6. Kurt Lion Foundation
  7. EDEN Project

向作者/读者索取更多资源

In contrast to a projective quantum measurement, in a weak measurement the system is only weakly perturbed while only partial information on the measured observable is obtained. A simultaneous measurement of non-commuting observables cannot be projective, however the strongest possible such measurement can be defined as providing their values at the smallest uncertainty limit. Starting with the Arthurs and Kelly (AK) protocol for such measurement of position and momentum, we derive a systematic extension to a corresponding weak measurement along three steps: First, a plausible form of the weak measurement operator analogous to the Gaussian Kraus operator, often used to model a weak measurement of a single observable, is obtained by projecting a naive extension (valid for commuting observable) onto the corresponding Gabor space. Second, we show that the so obtained set of measurement operators satisfies the normalization condition for the probability to obtain given values of the position and momentum in the weak measurement operation, namely that this set constitutes a positive operator valued measure (POVM) in the position-momentum space. Finally, we show that the so-obtained measurement operator corresponds to a generalization of the AK measurement protocol in which the initial detector wavefunctions is suitable broadened.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据