4.7 Article

Pharmacological difference between degrader and inhibitor against oncogenic BCR-ABL kinase

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-31913-5

关键词

-

资金

  1. Japan Society for the Promotion of Science (KAKENHI) [26860050, 26860049, 16H05090, 16K15121]
  2. Project for Cancer Research And Therapeutic Evolution (P-CREATE) [JP17cm0106522j0002, JP17cm0106124j0002]
  3. Research on Development of New Drugs from the Japan Agency for Medical Research and Development (AMED) [JP16ak0101029j1403]
  4. Takeda Science Foundation
  5. Takeda Pharmaceutical Co. Ltd.
  6. Grants-in-Aid for Scientific Research [16K15121, 26860050, 16H05090, 26860049] Funding Source: KAKEN

向作者/读者索取更多资源

Chronic myelogenous leukemia (CML) is characterized by the oncogenic fusion protein, BCR-ABL protein kinase, against which clinically useful inhibitors have been developed. An alternative approach to treat CML is to degrade the BCR-ABL protein. Recently, potent degraders against BCR-ABL have been developed by conjugating dasatinib to ligands for E3 ubiquitin ligases. Since the degraders contain the dasatinib moiety, they also inhibit BCR-ABL kinase activity, which complicates our understanding of the impact of BCR-ABL degradation by degraders in CML growth inhibition. To address this issue, we chose DAS-IAP, as a potent BCR-ABL degrader, and developed a structurally related inactive degrader, DAS-meIAP, which inhibits kinase activity but does not degrade the BCR-ABL protein. DAS-IAP showed slightly weaker activity than DAS-meIAP in inhibiting cell growth when CML cells were treated for 48 h. However, DAS-IAP showed sustained growth inhibition even when the drug was removed after short-term treatment, whereas CML cell growth rapidly resumed following removal of DAS-meIAP and dasatinib. Consistently, suppression of BCR-ABL levels and downstream kinase signaling were maintained after DAS-IAP removal, whereas kinase signaling rapidly recovered following removal of DAS-meIAP and dasatinib. These results indicate that BCR-ABL degrader shows more sustained inhibition of CML cell growth than ABL kinase inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据