4.7 Article

Designing artificial 2D crystals with site and size controlled quantum dots

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-017-08776-3

关键词

-

资金

  1. Air Force Office of Scientific Research [FA9550-14-1-0268]
  2. National Science Foundation [ECCS-1550230]
  3. UC Lab Fee Research Program [LFR-17-477237]
  4. MRSEC Program of the NSF [DMR1121053]
  5. Div Of Electrical, Commun & Cyber Sys
  6. Directorate For Engineering [1550230] Funding Source: National Science Foundation

向作者/读者索取更多资源

Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据