4.7 Article

Structural basis of TRPA1 inhibition by HC-030031 utilizing speciesspecific differences

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/srep37460

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology in Japan [15H02501]
  2. Okazaki Orion Project
  3. Grants-in-Aid for Scientific Research [15H05928, 15H02501, 16K18531] Funding Source: KAKEN

向作者/读者索取更多资源

Pain is a harmful sensation that arises from noxious stimuli. Transient receptor potential ankyrin 1 (TRPA1) is one target for studying pain mechanisms. TRPA1 is activated by various stimuli such as noxious cold, pungent natural products and environmental irritants. Since TRPA1 is an attractive target for pain therapy, a few TRPA1 antagonists have been developed and some function as analgesic agents. The responses of TRPA1 to agonists and antagonists vary among species and these species differences have been utilized to identify the structural basis of activation and inhibition mechanisms. The TRPA1 antagonist HC-030031 (HC) failed to inhibit frog TRPA1 (fTRPA1) and zebrafish TRPA1 activity induced by cinnamaldehyde (CA), but did inhibit human TRPA1 (hTRPA1) in a heterologous expression system. Chimeric studies between fTRPA1 and hTRPA1, as well as analyses using point mutants, revealed that a single amino acid residue (N855 in hTRPA1) significantly contributes to the inhibitory action of HC. Moreover, the N855 residue and the C-terminus region exhibited synergistic effects on the inhibition by HC. Molecular dynamics simulation suggested that HC stably binds to hTRPA1-N855. These findings provide novel insights into the structure-function relationship of TRPA1 and could lead to the development of more effective analgesics targeted to TRPA1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据