4.7 Article

The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep33901

关键词

-

资金

  1. National Natural Science Foundation of China [31530057, 31301577]
  2. Chinese Ministry of Science and Technology [2012AA101607]

向作者/读者索取更多资源

MADS-box transcription factors are highly conserved in eukaryotic species and involved in a variety of biological processes. Little is known, however, regarding the function of MADS-box genes in Botrytis cinerea, a fungal pathogen with a wide host range. Here, the functional role of the B. cinerea MADS-box gene, Bcmads1, was characterized in relation to the development, pathogenicity and production of sclerotia. The latter are formed upon incubation in darkness and serve as survival structures during winter and as the female parent in sexual reproduction. Bcmads1 is indispensable for sclerotia production. RT-qPCR analysis suggested that Bcmads1 modulated sclerotia formation by regulating the expression of light-responsive genes. Bcmads1 is required for the full virulence potential of B. cinerea on apple fruit. A comparative proteomic analysis identified 63 proteins, representing 55 individual genes that are potential targets of Bcmads1. Among them, Bcsec14 and Bcsec31 are associated with vesicle transport. Deletion of Bcsec14 and Bcsec31 resulted in a reduction in the virulence and protein secretion of B. cinerea. These results suggest that Bcmads1 may influence sclerotia formation by modulating light responsive gene expression and regulate pathogenicity by its effect on the protein secretion process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据