4.7 Article

Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir

期刊

SCIENTIFIC REPORTS
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep05821

关键词

-

资金

  1. National Basic Research Program of China [2012CB956103]
  2. National High-Tech Research and Development Program of China [2012AA062607]
  3. National Natural Science Foundation of China [31172114, 31370471]
  4. Natural Science Foundation for Distinguished Young Scholars of Fujian Province [2012J06009]

向作者/读者索取更多资源

Microorganisms play pivotal roles within aquatic ecosystems, affecting their structure, functioning and services. However, little is known about the effects of water stratification and mixing on the aquatic microbial community dynamics in subtropical reservoirs. In this study, we explored vertical and seasonal patterns of microbial diversity in the Dongzhen Reservoir (southeast China). Quantitative PCR, quantitative RT-PCR, and 454 pyrosequencing were used for an in-depth characterization of the bacterial community across time (every three months for one year) and space (five different water depths). Our results indicated that thermal and oxygen stratification shaped the phylogenetic composition of microbial communities in the reservoir. There were significant differences in physical, chemical and microbiological parameters between epilimnion and hypolimnion (P < 0.05). The RNA: DNA ratios were significantly lower in epilimnion and metalimnion but rapidly increased in hypolimnion (P < 0.05), suggesting that microorganisms were more active at low temperatures, low dissolved oxygen concentrations and high TN/TP ratios. Redundancy analysis and pathway analysis revealed a complex interplay of various environmental and biological factors by explaining the spatiotemporal variations in bacterial communities. Adaptive reservoir management strategies should consider carefully the effects of water stratification and mixing, together with the distribution patterns of aquatic microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据