4.7 Article

de novo Synthesis of a Bacterial Toxin/Antitoxin System

期刊

SCIENTIFIC REPORTS
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep04807

关键词

-

资金

  1. NIH [R01 GM089999]

向作者/读者索取更多资源

The prevalence of toxin/antitoxin (TA) systems in almost all genomes suggests they evolve rapidly. Here we show that an antitoxin from a type V system (GhoS, an endoribonuclease specific for the mRNA of the toxin GhoT) can be converted into a novel toxin (ArT) simply by adding two mutations. In contrast to GhoS, which increases growth, the new toxin ArT decreases growth dramatically in Escherichia coli. Transmission electron microscopy analysis revealed that the nucleoid in ArT-producing cells is concentrated and appears hollow. Whole-transcriptome profiling revealed ArT cleaves 50 additional transcripts, which shows that the endoribonuclease activity of GhoS has been broadened as it was converted to ArT. Furthermore, we evolved an antitoxin for the new toxin ArT from two unrelated antitoxin templates, the protein-based antitoxin MqsA and RNA-based antitoxin ToxI, and showed that the evolved MqsA and ToxI variants are able to counteract the toxicity of ArT. In addition, the de novo TA system was found to increase persistence, a phenotype commonly associated with TA systems. Therefore, toxins and antitoxins from disparate systems can be interconverted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据