4.6 Article

Enhanced catalytic activity and thermal stability of 2,4-dichlorophenol hydroxylase by using microwave irradiation and imidazolium ionic liquid for 2,4-dichlorophenol removal

期刊

RSC ADVANCES
卷 4, 期 107, 页码 62631-62638

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra10637g

关键词

-

资金

  1. National Natural Science Foundation of China [31100574]
  2. Fund from Science and Technology Department of Jilin Province [20130206066YY]

向作者/读者索取更多资源

Enzymatic removal of 2,4-dichlorophenol (2,4-DCP) has become more attractive recently due to its high efficiency, low cost and environmental benefits. A highly active 2,4-DCP hydroxylase for 2,4-DCP removal was obtained and used in 2,4-DCP removal by employing microwave irradiation as a heating mode and ionic liquid (IL) as an additive. Both [EMIM][PF6] (1-ethyl-3-methylimidazolium hexafluorophosphate) and microwave irradiation were found to increase the 2,4-DCP removal efficiency and the thermal stability of 2,4-DCP hydroxylase, and a further incremental effect of microwave irradiation and [EMIM][PF6] on improving the 2,4-DCP removal efficiency and enzymatic thermal stability was observed. Conditions for 2,4-DCP removal were optimized and the removal of 2,4-DCP was completed in 15 min at 25 degrees C with 0.66 +/- 0.015 U mg(-1) enzyme activity under the optimum conditions, much faster than the present enzymatic removal route, which took several hours for complete 2,4-DCP removal. Only 30 min were required for complete 2,4-DCP removal by using the 2,4-DCP hydroxylase at 4 degrees C, indicating its psychrotrophic adaptability. These results showed that the use of 2,4-DCP hydroxylase under microwave in [EMIM][PF6] is a fast, efficient and environmentally benign method for the removal of 2,4-DCP, and this method can be used over a wide temperature range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据