4.6 Article

Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis

期刊

RSC ADVANCES
卷 3, 期 17, 页码 6106-6116

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra21978j

关键词

-

资金

  1. DST [SR/S1/PC-63/2009]

向作者/读者索取更多资源

The present work provides an effective methodology for controlled room-temperature aqueous synthesis of nickel oxalate (NiOX) nanosheets and nanoflakes in the presence of anion rich self-assembled bilayers of catanionic surfactant comprising of anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB). Encouragingly alteration of the CTAB/SDS ratio played an extraordinary role to form nanoflakes and nanosheets of NiOX. Our synthetic approach is combined with calcination to produce antiferromagnetic spherical and hexagonal nickel oxide (NiO) nanoparticles (NPs) as the end product. Synthesized nanostructured NiOX and NiO were characterized by X-ray diffraction study (XRD), energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM studies illustrated that spherical NiO NPs have an average size around 510 nm and that of hexagonal NiO NPs have average width of about 22-27 nm. Temperature and field dependent magnetic properties of spherical and hexagonal NiO nanomaterials (NMs) were measured by using a SQUID magnetometer which revealed canted antiferromagnetic and spin glass nature, respectively. In addition, we report photocatalytic activity of NiO NMs, investigated on the photodegradation of phenol under ambient conditions, and as expected, the NiO having largest surface area showed best catalytic efficiency. This biomimetic catanionic surfactant inspired approach which require only metal ions as reactants have a definite potential towards an alternative, simple way of synthesizing metal oxide NMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据