4.6 Article

Carbon nanofiber-RuO2-poly(benzimidazole) ternary hybrids for improved supercapacitor performance

期刊

RSC ADVANCES
卷 3, 期 7, 页码 2428-2436

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra22776b

关键词

-

资金

  1. CSIR
  2. DST [GAP 296126]

向作者/读者索取更多资源

Carbon nanofiber-RuO2-poly(benzimidazole) ternary hybrid electrode material which integrates dual wall decoration and interfacial area tuning for supercapacitor applications has been devised based on a simple approach. This is achieved by decorating RuO2 nanoparticles of size ca. 2-3 nm along the inner and outer walls of a hollow carbon nanofiber (CNF) support (F-20RuO(2)). In the next step, a proton conducting polymer, phosphoric acid doped polybenzimidazole (PBI-BuI), interface is created along the inner and outer surfaces of this material. A 103% increase in the specific capacitance is obtained for RuO2-PBI hybrid material as compared to that of F-20RuO(2) at the optimum level of the polymer wrapping. Apart from the high specific capacitance, the RuO2-PBI hybrid materials exhibit enhanced rate capability and excellent electrochemical stability of 98% retention in the capacitance. Such a remarkably high activity can be primarily attributed to the efficient dispersion of active sites achieved by properly utilizing inner and outer surfaces of CNF. Apart from this, the facile routes for ion transport created as a result of PBI incorporation coupled with excellent interfacial contact between the RuO2 and the electrolyte resulting in the improved utilization of the active material also contribute to the improved activity. In addition to this, the synergistic effects of pseudocapacitive contribution from both the PBI-BuI and RuO2 also contribute to the redefined performance characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据