4.2 Article

Interplay of Oxidants and Antioxidants During Exercise: Implications for Muscle Health

期刊

PHYSICIAN AND SPORTSMEDICINE
卷 37, 期 4, 页码 116-123

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3810/psm.2009.12.1749

关键词

muscle adaptations; mitogen-activated protein kinases; nuclear factor-kappa B; reactive oxygen; nitrogen species; signaling

向作者/读者索取更多资源

Muscle contraction results in generation of reactive oxygen and nitrogen species (RONS) at a rate determined by the intensity, frequency, and duration of the exercise protocols. Strenuous exercise causes oxidation of protein, lipid, and DNA, release of cytosolic enzymes, and other signs of cell damage; however, only exhaustive exercise is detrimental. Indeed, the regulation of vascular tone, the excitation-contraction coupling, growth, and differentiation in skeletal muscle, are governed in part by RONS. This is accomplished by RONS interaction with redox-sensitive transcription factors, leading to increased gene expression of anti oxidant enzymes, cytoprotective proteins, and other enzymes involved in muscle metabolic functions. However, high levels of RONS generation are known to cause oxidative stress, activate certain pathogenic pathways, and accelerate aging. This article reviews research from the past decades on the interplay of oxidants and anti oxidants in skeletal muscle, with particular reference to increased contractile activity. Adaptation of muscle to increased oxidative stress and the potential mechanisms involved will be highlighted. The role of redox-controlled cell signaling in skeletal muscle health and function is also described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据