4.5 Article

REFINED BEAM THEORIES BASED ON A UNIFIED FORMULATION

期刊

出版社

IMPERIAL COLLEGE PRESS
DOI: 10.1142/S1758825110000500

关键词

Beam structures; Hierarchical modelling; Closed form solution

资金

  1. Ministere de la Culture, de l'Enseignement Superieuer et de la Recherche of Luxembourg [TR-PDR BFR07-136]

向作者/读者索取更多资源

This paper proposes several axiomatic refined theories for the linear static analysis of beams made of isotropic materials. A hierarchical scheme is obtained by extending plates and shells Carrera's Unified Formulation (CUF) to beam structures. An N-order approximation via Mac Laurin's polynomials is assumed on the cross-section for the displacement unknown variables. N is a free parameter of the formulation. Classical beam theories, such as Euler-Bernoulli's and Timoshenko's, are obtained as particular cases. According to CUF, the governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. The governing differential equations are solved via the Navier type, closed form solution. Rectangular and I-shaped cross-sections are accounted for. Beams undergo bending and torsional loadings. Several values of the span-to-height ratio are considered. Slender as well as deep beams are analysed. Comparisons with reference solutions and three-dimensional FEM models are given. The numerical investigation has shown that the proposed unified formulation yields the complete three-dimensional displacement and stress fields for each cross-section as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam and loading conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据