4.6 Article

Optical imaging of metabolism in HER2 overexpressing breast cancer cells

期刊

BIOMEDICAL OPTICS EXPRESS
卷 3, 期 1, 页码 75-85

出版社

OPTICAL SOC AMER
DOI: 10.1364/BOE.3.000075

关键词

-

资金

  1. NIH [CA68485, DK20593, DK58404, HD15052, DK59637, EY08126]
  2. Vanderbilt Ingram Cancer Center [P30 CA68485]
  3. Vanderbilt Digestive Disease Research Center [DK058404]
  4. Vanderbilt University
  5. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT [P30HD015052] Funding Source: NIH RePORTER
  6. NATIONAL CANCER INSTITUTE [P30CA068485, R00CA142888, K08CA143153] Funding Source: NIH RePORTER
  7. NATIONAL EYE INSTITUTE [P30EY008126] Funding Source: NIH RePORTER
  8. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [P30DK020593, U24DK059637, P60DK020593, P30DK058404] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The optical redox ratio (fluorescence intensity of NADH divided by that of FAD), was acquired for a panel of breast cancer cell lines to investigate how overexpression of human epidermal growth factor receptor 2 (HER2) affects tumor cell metabolism, and how tumor metabolism may be altered in response to clinically used HER2-targeted therapies. Confocal fluorescence microscopy was used to acquire NADH and FAD autofluorescent images. The optical redox ratio was highest in cells overexpressing HER2 and lowest in triple negative breast cancer (TNBC) cells, which lack HER2, progesterone receptor, and estrogen receptor (ER). The redox ratio in ER-positive/HER2-negative cells was higher than what was seen in TNBC cells, but lower than that in HER2 overexpressing cells. Importantly, inhibition of HER2 using trastuzumab significantly reduced the redox ratio in HER2 overexpressing cells. Furthermore, the combinatorial inhibition of HER2 and ER decreased the redox ratio in ER+/HER2+ breast cancer cells to a greater extent than inhibition of either receptor alone. Interestingly, trastuzumab had little impact upon the redox ratio in a cell line selected for acquired resistance to trastuzumab. Taken together, these data indicate that the optical redox ratio measures changes in tumor metabolism that reflect the oncogenic effects of HER2 activity within the cell, as well as the response of the cell to therapeutic inhibition of HER2. Therefore, optical redox imaging holds the promise of measuring response and resistance to receptor-targeted breast cancer therapies in real time, which could potentially impact clinical decisions and improve patient outcome. (C) 2011 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据