4.8 Article

Controlling Surface Oxides in Si/C Nanocomposite Anodes for High-Performance Li-Ion Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201801718

关键词

lithium-ion batteries; nanoparticles; silicon-based composite anodes; solid electrolyte interfaces; surface oxide

资金

  1. National Key Research and Development Program of China [2016YFB0901500, 2018YFB0905400]
  2. National Natural Science Foundation of China [21233004, 21473148, 21621091, 21761132030, 21703185]
  3. Fundamental Research Funds for the Central Universities (Xiamen University) [20720170042]
  4. US National Science Foundation [DMR-1410936]
  5. Division Of Materials Research [1410936] Funding Source: National Science Foundation

向作者/读者索取更多资源

Si/C composites represent one promising class of anode materials for next-generation lithium-ion batteries. To achieve high performances of Si-based anodes, it is critical to control the surface oxide of Si particles, so as to harness the chemomechanical confinement effect of surface oxide on the large volume changes of Si particles during lithiation/delithiation. Here a systematic study of Si@SiOx/C nanocomposite electrodes consisting of Si nanoparticles covered by a thin layer of surface oxide with a tunable thickness in the range of 1-10 nm is reported. It is shown that the oxidation temperature and time not only control the thickness of the surface oxide, but also change the structure and valence state of Si in the surface oxide. These factors can have a strong influence on the lithiation/delithiation behavior of Si nanoparticles, leading to different electrochemical performances. By combining experimental and modeling studies, an optimal thickness of about 5 nm for the surface oxide layer of Si nanoparticles is identified, which enables a combination of high capacity and long cycle stability of the Si@SiOx/C nanocomposite anodes. This work provides an in-depth understanding of the effects of surface oxide on the Si/C nanocomposite electrodes. Insights gained are important for the design of high-performance Si/C composite electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据