4.8 Article

High-Surface-Area Porous Platinum Electrodes for Enhanced Charge Transfer

期刊

ADVANCED ENERGY MATERIALS
卷 4, 期 14, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201400510

关键词

-

资金

  1. Swiss National Science Foundation [132126]
  2. University of South Carolina
  3. German National Academy of Sciences Leopoldina, Fellowship LPDS

向作者/读者索取更多资源

Cobalt-based electrolytes are highly tunable and have pushed the limits of dye-sensitized solar cells, enabling higher open-circuit voltages and new record efficiencies. However, the performance of these electrolytes and a range of other electrolytes suffer from slow electron transfer at platinum counter electrodes. High surface area platinum would enhance catalysis, but pure platinum structures are too expensive in practice. Here, a material-efficient host-guest architecture is developed that uses an ultrathin layer of platinum deposited upon an electrically conductive scaffold, niobium-doped tin oxide (NTO). This nanostructured composite enhances the counter electrode performance of dye-sensitized solar cells (DSCs) using a (CoBPY3)-B-(II/III) electrolyte with an increased fill factor and power conversion efficiency (11.26%), compared to analogous flat films. The modular strategy is elaborated by integrating a light scattering layer onto the counter electrode to reflect unabsorbed light back to the photoanode to improve the short-circuit current density and power conversion efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据