4.8 Article

Band Gap Control in Diketopyrrolopyrrole-Based Polymer Solar Cells Using Electron Donating Side Chains

期刊

ADVANCED ENERGY MATERIALS
卷 3, 期 5, 页码 674-679

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201200950

关键词

conjugated polymers; organic electronics; solar cells

资金

  1. Europees Fonds voor Regionale Ontwikkeling (EFRO) in the Interreg IV-A project Organext
  2. European Commission [261936]

向作者/读者索取更多资源

We compare the opto-electronic and photovoltaic properties of two diketopyrrolopyrrole (DPP) based semiconducting polymers in which the DPP unit alternates along the chain with a conjugated bis(dithienyl)phenylene (4TP) unit. The two polymers differ only in the solubilizing substituents on the thiophene rings which are either alkyl (PDPP4TP) or alkoxy (PDPP4TOP) groups. We show that alkoxy groups lower the optical band gap and increase the ionization potential compared to the alkyl groups. As a result, PDDP4TOP provides a significantly higher charge generation efficiency and concomitant higher short-circuit current, 18.0 mA cm2 vs. 12.4 mA cm2, compared to PDPP4TP in optimized devices with [6,6]phenyl-C71-butyric acid methyl ester ([70]PCBM) as acceptor, but a simultaneous decrease in open circuit voltage, 0.51 vs. 0.67 V. The increased current arises from a higher external quantum efficiency and a wider spectral coverage. The net result is a small increase in power conversion efficiency from 5.8% for PDPP4TP to 6.0% for the PDPP4TOP in optimized devices. The optimized processing conditions and bulk heterojunction morphology are virtually identical for both photoactive layers. The study demonstrates that the side chains enable effective method for rationally designing new photoactive semiconducting polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据