4.8 Article

Theoretical Study of the Chemoselectivity of Tungsten-Dependent Acetylene Hydratase

期刊

ACS CATALYSIS
卷 1, 期 8, 页码 937-944

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs200242m

关键词

acetylene hydratase; enzyme mechanism; chemoselectivity; transition state; density functional theory

资金

  1. Swedish Research Council [621-2009-4736, 622-2009-371]

向作者/读者索取更多资源

The tungsten-dependent enzyme acetylene hydratase catalyzes the hydration of acetylene to acetaldehyde. Very recently, we proposed a reaction mechanism for this enzyme based on density functional calculations (Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22523). The mechanism involves direct coordination of the substrate to the tungsten ion, followed by a nucleophilic attack by a water molecule concerted with a proton transfer to a second-shell aspartate, which then reprotonates the substrate. Here, we use the same methodology to investigate the factors involved in the control of the chemoselectivity of this enzyme. The hydration reactions of three representative compounds (propyne, ethylene, and acetonitrile) are investigated using a large model of the active site. The energy of substrate binding to the metal ion and the barrier for the following nucleophilic attack are used to rationalize the experimental observations. It is shown that all three compounds have higher barriers for hydration compared with acetylene. In addition, propyne is shown to have a larger binding energy, explaining its behavior as a competitive inhibitor. Taken together, the results provide further corroboration of our suggested mechanism for acetylene hydratase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据