4.8 Article

DNA repair choice defines a common pathway for recruitment of chromatin regulators

期刊

NATURE COMMUNICATIONS
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms3084

关键词

-

资金

  1. NIH [GM54096]

向作者/读者索取更多资源

DNA double-strand break repair is essential for maintenance of genome stability. Recent work has implicated a host of chromatin regulators in the DNA-damage response, and although several functional roles have been defined, the mechanisms that control their recruitment to DNA lesions remain unclear. Here we find that efficient double-strand break recruitment of the INO80, SWR-C, NuA4, SWI/SNF and RSC enzymes is inhibited by the non-homologous end-joining machinery, and that their recruitment is controlled by early steps of homologous recombination. Strikingly, we find no significant role for H2A.X phosphorylation in the recruitment of chromatin regulators, but rather their recruitment coincides with reduced levels of H2A.X phosphorylation. Our work indicates that cell cycle position has a key role in DNA repair pathway choice and that recruitment of chromatin regulators is tightly coupled to homologous recombination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据