4.8 Article

A four-dimensional X-ray tomographic microscopy study of bubble growth in basaltic foam

期刊

NATURE COMMUNICATIONS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms2134

关键词

-

向作者/读者索取更多资源

Understanding the influence of bubble foams on magma permeability and strength is critical to investigations of volcanic eruption mechanisms. Increasing foam porosity decreases strength, enhancing the probability of an eruption. However, higher porosities lead to larger permeabilities, which can lessen the eruption hazard. Here we measure bubble size and wall thickness distributions, as well as connectivity, and calculate permeabilities and tensile strengths of basaltic foams imaged by synchrotron X-ray tomographic microscopy during bubble growth in hydrated basaltic melts. Rapid vesiculation produces porous foams whose fragmentation thresholds are only 5-6 MPa and whose permeabilities increase from approximately 1x10(-10) to 1x10(-9) m(2) between 10 and 14 s despite decreasing connectivity between bubbles. These results indicate that basaltic magmas are most susceptible to failure immediately upon vesiculation and at later times, perhaps only 10's of seconds later, permeability increases may lessen the hazard of explosive, basaltic, Plinian eruptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据