4.7 Article

Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

期刊

CELL DEATH & DISEASE
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2013.58

关键词

apoptosis; microtubules; cytoskeleton; caspases; secondary necrosis

资金

  1. Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Union Europea) [FIS PI10/00543, FIS EC08/00076]
  2. Servicio Andaluz de Salud-Junta de Andalucia [SAS 111242]
  3. Proyecto de Investigacion de Excelencia de la Junta de Andalucia [CTS-5725]
  4. AEPMI (Asociacion de Enfermos de Patologia Mitocondrial)

向作者/读者索取更多资源

Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as a-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit beta 4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit beta was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. Cell Death and Disease (2013) 4, e527; doi:10.1038/cddis. 2013.58; published online 7 March 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据