4.7 Article

PTEN-regulated AKT/FoxO3a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells

期刊

CELL DEATH & DISEASE
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2013.3

关键词

selenite; apoptosis; AKT; FoxO3a; reactive oxygen species (ROS)

资金

  1. National Natural Science Foundation for Young Scholars of China [31101018]
  2. National Natural Science Foundation of China [31170788, 30970655]
  3. State Key Laboratory Special Fund [2060204]
  4. Research Fund for the Doctoral Program of Higher Education of China [20091106110025]

向作者/读者索取更多资源

Mounting evidence shows that selenium possesses chemotherapeutic potential against tumor cells, including leukemia, prostate cancer and colorectal cancer (CRC) cells. However, the detailed mechanism by which sodium selenite specifically kills tumor cells remains unclear. Herein, we demonstrated that supranutritional doses of selenite-induced apoptosis in CRC cells through reactive oxygen species (ROS)-dependent modulation of the PI3K/AKT/FoxO3a signaling pathway. First, we found that selenite treatment in HCT116 and SW480 CRC cells caused inhibition of AKT and the nuclear accumulation of FoxO3a by western blot and immunofluorescence analyses, respectively, thereby facilitating transcription of the target genes bim and PTEN. Modulation of the AKT/FoxO3a/Bim signaling pathway by chemical inhibitors or RNA interference revealed that these events were critical for selenite-induced apoptosis in CRC cells. Additionally, we discovered that FoxO3a-mediated upregulation of PTEN exerted a further inhibitory effect on the AKT survival pathway. We also corroborated our findings in vivo by performing immunohistochemistry experiments. In summary, our results show that selenite could induce ROS-dependent FoxO3a-mediated apoptosis in CRC cells and xenograft tumors through PTEN-mediated inhibition of the PI3K/AKT survival axis. These results help to elucidate the molecular mechanisms underlying selenite-induced cell death in tumor cells and provide a theoretical basis for translational applications of selenium. Cell Death and Disease (2013) 4, e481; doi: 10.1038/cddis.2013.3; published online 7 February 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据