4.1 Article

Applied plasma spectroscopy: Laser-fusion experiments

期刊

HIGH ENERGY DENSITY PHYSICS
卷 5, 期 4, 页码 234-243

出版社

ELSEVIER
DOI: 10.1016/j.hedp.2009.05.004

关键词

Inertial confinement fusion; X-ray spectroscopy; Stark broadening; Laser fusion

资金

  1. U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302]
  2. University of Rochester
  3. New York State Energy Research and Development Authority
  4. DOE

向作者/读者索取更多资源

High-energy-density plasmas created in laser-fusion experiments are diagnosed with X-ray spectroscopy. Hans Griem, considered the father of modern plasma spectroscopy, provided an excellent foundation for this research. He studied the effect of plasma particles, in particular the fast-moving free electrons, on the Stark-broadening of spectral line shapes in plasmas [H. Griem, Phys. Rev. 125 (1962) 177]. Over the last three decades, X-ray spectroscopy has been used to record the remarkable progress made in inertial confinement fusion research. Four areas of X-ray spectroscopy for laser-fusion experiments are highlighted in this paper: K alpha emission spectroscopy to diagnose target preheat by suprathermal electrons, Stark-broadened K-shell emissions of mid-Z elements to diagnose compressed densities and temperatures of implosion cores, K- and L-shell absorption spectroscopy to diagnose the relatively cold imploding shell (the piston) that does not emit X rays, and multispectral monochromatic imaging of implosions to diagnose core temperature and density profiles. The seminal research leading to the original X-ray spectroscopy experiments in these areas will be discussed and compared to current state-of-the-art measurements. (C) 2009 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Fluids & Plasmas

Enhanced laser-energy coupling with small-spot distributed phase plates (SG5-650) in OMEGA DT cryogenic target implosions

W. Theobald, D. Cao, R. C. Shah, C. A. Thomas, I. V. Igumenshchev, K. A. Bauer, R. Betti, M. J. Bonino, E. M. Campbell, A. R. Christopherson, K. Churnetski, D. H. Edgell, C. J. Forrest, J. A. Frenje, M. Gatu Johnson, V. Yu. Glebov, V. N. Goncharov, V. Gopalaswamy, D. R. Harding, S. X. Hu, S. T. Ivancic, D. W. Jacobs-Perkins, R. T. Janezic, T. Joshi, J. P. Knauer, A. Lees, R. W. Luo, O. M. Mannion, F. J. Marshall, Z. L. Mohamed, S. F. B. Morse, D. Patel, J. L. Peebles, R. D. Petrasso, P. B. Radha, H. G. Rinderknecht, M. J. Rosenberg, S. Sampat, T. C. Sangster, W. T. Shmayda, C. M. Shuldberg, A. Shvydky, C. Sorce, C. Stoeckl, M. D. Wittman, S. P. Regan

Summary: By reducing the ratio of the laser spot diameter to the target diameter, cryogenic deuterium-tritium ice target implosions on OMEGA with new small-spot distributed phase plates achieved an 11% increase in energy coupling. However, this also resulted in increased hot-electron production and hydrodynamic instabilities.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Knock-on deuteron imaging for diagnosing the morphology of an ICF implosion at OMEGA

J. H. Kunimune, H. G. Rinderknecht, P. J. Adrian, P. V. Heuer, S. P. Regan, F. H. Seguin, M. Gatu Johnson, R. P. Bahukutumbi, J. P. Knauer, B. L. Bachmann, J. A. Frenje

Summary: Knock-on deuteron imaging is a new diagnostic technique used to diagnose the morphology of inertial confinement fusion implosions. It utilizes the scattering of deuterons to probe the shape of the hot-spot and the distribution of the dense fuel layer. The first proof-of-concept tests have been successfully conducted, revealing asymmetries and mixing between the hot-spot and shell.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

3D simulations of inertial confinement fusion implosions part 2: systematic flow anomalies and impact of low modes on performances in OMEGA experiments

A. Colaitis, I. Igumenshchev, D. P. Turnbull, R. Shah, D. Edgell, O. M. Mannion, C. Stoeckl, D. W. Jacob-Perkins, A. Shvydky, R. Janezic, A. Kalb, D. Cao, C. J. Forrest, J. Kwiatkowski, S. P. Regan, W. Theobald, V. N. Goncharov, D. Froula

Summary: This study presents the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with a package for polarized crossed-beam energy transfer (CBET). The simulations assess the impact of distributed polarization rotators (DPRs) and other asymmetry sources. The results show that accurate prediction of bang times and yields can be achieved by accounting for imprint and fuel age effects, and that polarized CBET is the main drive asymmetry factor.

PLASMA PHYSICS AND CONTROLLED FUSION (2023)

Article Physics, Fluids & Plasmas

Effect of overlapping laser beams and density scale length in laser-plasma instability experiments on OMEGA EP

M. J. Rosenberg, A. A. Solodov, J. F. Myatt, S. Hironaka, J. Sivajeyan, R. K. Follett, T. Filkins, A. V. Maximov, C. Ren, S. Cao, P. Michel, M. S. Wei, J. P. Palastro, R. H. H. Scott, K. Glize, S. P. Regan

Summary: Experiments have been conducted on the OMEGA EP laser facility to investigate the impact of density scale length and overlapping beam geometry on laser-plasma instabilities near and below the quarter-critical density. The experiments were performed in both planar and spherical geometries with different density scale lengths and numbers of overlapping beams. It was found that shorter density scale lengths favored the two-plasmon decay (TPD) instability, while longer density scale lengths favored stimulated Raman scattering (SRS). In addition, higher single-beam intensities favored SRS, while a larger number of overlapping beams favored TPD.

PHYSICS OF PLASMAS (2023)

Correction Physics, Fluids & Plasmas

First graded metal pushered single shell capsule implosions on the National Ignition Facility (vol 29, 052707, 2022)

E. L. Dewald, S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D. M. Ho, C. V. Young, C. Horwood, S. F. Khan, E. P. Hartouni, M. S. Rubery, M. Millot, A. R. Vazsonyi, S. Vonhof, G. Mellos, S. Johnson, V. A. Smalyuk, F. Graziani, E. R. Monzon, R. Tommasini, D. Alessi, S. Ayers, G. N. Hall, J. Holder, D. Kalantar, A. J. MacKinnon, J. Okui, M. Prantil, J. -m. Di Nicola, T. Lanier, A. Thomas, S. Yang, H. W. Xu, H. Huang, J. Bae, C. W. Kong, N. Rice, Y. M. Wang, P. Volegov, M. S. Freeman, C. Wilde

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

K. L. Baker, C. A. Thomas, O. L. Landen, S. Haan, J. D. Lindl, D. T. Casey, C. Young, R. Nora, O. A. Hurricane, D. A. Callahan, O. Jones, L. Berzak Hopkins, S. Khan, B. K. Spears, S. Le Pape, N. B. Meezan, D. D. Ho, T. Doppner, D. Hinkel, E. L. Dewald, R. Tommasini, M. Hohenberger, C. Weber, D. Clark, D. T. Woods, J. L. Milovich, D. Strozzi, A. Kritcher, H. F. Robey, J. S. Ross, V. A. Smalyuk, P. A. Amendt, B. Bachmann, L. R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, P. K. Patel, D. Turnbull, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In indirect-drive implosions, increasing laser peak power and radiation drive temperature can improve the core hot spot energy, pressure, and neutron yield. This improvement has been quantified and explained by simple analytic scalings validated by 1D simulations. Extrapolating from existing data, it is possible to achieve a yield of 2-3x10^17 (0.5-0.7 MJ) using only 1.8 MJ of laser energy in a low gas-fill 5.4 mm diameter Hohlraum at the 500 TW National Ignition Facility peak power limit.

PHYSICS OF PLASMAS (2023)

Review Instruments & Instrumentation

X-ray imaging methods for high-energy density physics applications

B. Kozioziemski, B. Bachmann, A. Do, R. Tommasini

Summary: Large scale high-energy density science facilities are growing in scale and complexity, with improved driver capabilities pushing the boundaries of temperature, pressure, and densities. X-ray imaging, particularly absorption imaging, has been improved over the last few decades, enabling pico-second imaging with few micron resolutions.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Instruments & Instrumentation

Ultrafast time-resolved 2D imaging of laser-driven fast electron transport in solid density matter using an x-ray free electron laser

H. Sawada, T. Yabuuchi, N. Higashi, T. Iwasaki, K. Kawasaki, Y. Maeda, T. Izumi, Y. Nakagawa, K. Shigemori, Y. Sakawa, C. B. Curry, M. Frost, N. Iwata, T. Ogitsu, K. Sueda, T. Togashi, S. H. Glenzer, A. J. Kemp, Y. Ping, Y. Sentoku

Summary: We demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using an XFEL. The electron-heated region expands at approximately 25% of the speed of light with a duration of picoseconds. This imaging technique has broad applications for studying laser-driven relativistic electrons, energetic protons, or intense x-ray beam isochorically heated targets.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Multidisciplinary

Proof-of-Principle Experiment on the Dynamic Shell Formation for Inertial Confinement Fusion

I. V. Igumenshchev, W. Theobald, C. Stoeckl, R. C. Shah, D. T. Bishel, V. N. Goncharov, M. J. Bonino, E. M. Campbell, L. Ceurvorst, D. A. Chin, T. J. B. Collins, S. Fess, D. R. Harding, S. Sampat, N. R. Shaffer, A. Shvydky, E. A. Smith, W. T. Trickey, L. J. Waxer, A. Colaitis, R. Liotard, P. J. Adrian, S. Atzeni, F. Barbato, L. Savino, N. Alfonso, A. Haid, Mi Do

Summary: In the DS concept, the deuterium-tritium fuel is initially in the form of a homogeneous liquid inside a wetted-foam spherical shell. This study demonstrates the feasibility of DS formation through a proof-of-principle experiment on the OMEGA laser. The experiment shows good agreement with the predicted evolution of the DS and its stability to perturbations.

PHYSICAL REVIEW LETTERS (2023)

Review Physics, Multidisciplinary

Physics principles of inertial confinement fusion and US program overview

O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan, S. A. Slutz, M. R. Gomez, M. A. Sweeney

Summary: Inertial confinement fusion (ICF) is a research field that originated from the Cold War and has since developed into three major Department of Energy facilities. This review focuses on the physics principles of ICF targets and recent research progress in the past decade.

REVIEWS OF MODERN PHYSICS (2023)

Article Physics, Fluids & Plasmas

Alpha heating of indirect-drive layered implosions on the National Ignition Facility

K. L. Baker, S. MacLaren, O. Jones, B. K. Spears, P. K. Patel, R. Nora, L. Divol, O. L. Landen, G. J. Anderson, J. Gaffney, M. Kruse, O. A. Hurricane, D. A. Callahan, A. R. Christopherson, J. Salmonson, E. P. Hartouni, T. Doppner, E. Dewald, R. Tommasini, C. A. Thomas, C. Weber, D. Clark, D. T. Casey, M. Hohenberger, S. Khan, T. Woods, J. L. Milovich, R. L. Berger, D. Strozzi, A. Kritcher, B. Bachmann, R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, A. Pak, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In order to understand the proximity to ignition of current layered implosions in indirect-drive inertial confinement fusion, the level of alpha heating present needs to be measured. Experimental validation of current simulation-based methods of determining yield amplification was conducted through paired experiments, consisting of low-yield tritium-hydrogen-deuterium (THD) layered implosion and high-yield deuterium-tritium (DT) layered implosion. The THD capsules were designed to reduce DT neutron yield (alpha heating) while maintaining hydrodynamic similarity with the higher yield DT capsules. The measured yield ratio in these experiments allowed the determination of the alpha heating level in the DT layered implosions.

PHYSICAL REVIEW E (2023)

Article Physics, Nuclear

γ-to-neutron branching ratio for deuterium-tritium fusion determined using high-energy-density plasmas and a fused silica Cherenkov detector

Z. L. Mohamed, Y. Kim, J. P. Knauer, M. S. Rubery

Summary: A fused silica Cherenkov detector was used to measure DT gammas in direct-drive cryogenic experiments. The detector was calibrated using a 4.4 MeV gamma from carbon. The measurement resulted in a ground state only gamma-to-neutron branching ratio lower than accelerator-based measurements.

PHYSICAL REVIEW C (2023)

Article Physics, Fluids & Plasmas

Design of an inertial fusion experiment exceeding the Lawson criterion for ignition

A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. R. Weber, D. S. Clark, C. V. Young, J. E. Ralph, D. T. Casey, A. Pak, O. L. Landen, B. Bachmann, K. L. Baker, L. Berzak Hopkins, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, T. Braun, T. M. Briggs, P. M. Celliers, H. Chen, C. Choate, L. Divol, T. Doeppner, D. Fittinghoff, M. J. Edwards, M. Gatu Johnson, N. Gharibyan, S. Haan, K. D. Hahn, E. Hartouni, D. E. Hinkel, D. D. Ho, M. Hohenberger, J. P. Holder, H. Huang, N. Izumi, J. Jeet, O. Jones, S. M. Kerr, S. F. Khan, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, K. M. Lamb, S. Le Pape, N. C. Lemos, J. D. Lindl, B. J. MacGowan, A. J. Mackinnon, A. G. MacPhee, E. V. Marley, K. Meaney, M. Millot, A. S. Moore, K. Newman, J. -M. G. Di Nicola, A. Nikroo, R. Nora, P. K. Patel, N. G. Rice, M. S. Rubery, J. Sater, D. J. Schlossberg, S. M. Sepke, K. Sequoia, S. J. Shin, M. Stadermann, S. Stoupin, D. J. Strozzi, C. A. Thomas, R. Tommasini, C. Trosseille, E. R. Tubman, P. L. Volegov, C. Wild, D. T. Woods, S. T. Yang

Summary: This article presents the design of the first igniting fusion plasma in the laboratory by Lawson's criterion, achieving 1.37 MJ of fusion energy. The design utilizes the indirect drive inertial confinement fusion approach and shows significant improvements in ignition compared to predecessor experiments.

PHYSICAL REVIEW E (2022)

Article Physics, Fluids & Plasmas

Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields

R. C. Shah, D. Cao, L. Aghaian, B. Bachmann, R. Betti, E. M. Campbell, R. Epstein, C. J. Forrest, A. Forsman, V. Yu Glebov, V. N. Goncharov, V Gopalaswamy, D. R. Harding, S. X. Hu, I. Igumenshchev, R. T. Janezic, L. Keaty, J. P. Knauer, D. Kobs, A. Lees, O. M. Mannion, Z. L. Mohamed, D. Patel, M. J. Rosenberg, W. T. Shmayda, C. Stoeckl, W. Theobald, C. A. Thomas, P. Volegov, K. M. Woo, S. P. Regan

Summary: This study develops a scaling for x-ray yield based on simulations with varying degrees of equilibration, which can serve to infer hot-spot mix in laser-driven implosions. The comparison of measured x-ray and neutron yields indicates that the sensitivity of hot-spot mix is estimated to be below 2%.

PHYSICAL REVIEW E (2022)

Article Physics, Fluids & Plasmas

Measurements of the temperature and velocity of the dense fuel layer in inertial confinement fusion experiments

O. M. Mannion, A. J. Crilly, C. J. Forrest, B. D. Appelbe, R. Betti, V. Yu Glebov, V Gopalaswamy, J. P. Knauer, Z. L. Mohamed, C. Stoeckl, J. P. Chittenden, S. P. Regan

Summary: Backscatter neutron spectroscopy was used to measure the apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression. The average isotropic residual kinetic energy of the fuel was estimated using the mean velocity measurement. The apparent ion-temperature measurements from high-implosion velocity experiments exceeded expectations from radiation-hydrodynamic simulations, suggesting enhanced shell decompression and saturation of implosion performance with implosion velocity for laser-direct-drive implosions.

PHYSICAL REVIEW E (2022)

暂无数据