4.6 Article

Self-organization of an optomagnetic CoFe2O4-ZnS nanocomposite: preparation and characterization

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 3, 期 16, 页码 3935-3945

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tc00023h

关键词

-

资金

  1. NSERC

向作者/读者索取更多资源

We report an advanced method for the self-organization of an optomagnetic nanocomposite composed of both fluorescent clusters (ZnS quantum dots, QDs) and magnetic nanoparticles (CoFe2O4). ZnS nanocrystals were prepared via an aqueous method at different temperatures (25, 50, 75, and 100 degrees C). Their structural, optical and chemical properties were comprehensively characterized by X-ray diffraction (XRD), UV-vis, photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), and infrared spectroscopy (FT-IR). The highest PL intensity was observed for the cubic ZnS nanoparticles synthesized at 75 degrees C which were then stabilized electrosterically using thioglycolic acid. The photophysical analysis of the capped QDs with a particle size in the range 9-25 nm revealed that the emission intensity and the optical band gap increases compared to uncapped nanocrystals (3.88 to 4.02 eV). These band gaps are wider than that of bulk ZnS resulting from the quantum confinement effect. Magnetic nanoparticles were synthesized via a co-precipitation route and a sol-gel process was used to form the functionalized, silica-coated CoFe2O4. Finally, thiol coordination was used for binding the QDs to the surface of the magnetic nanoparticles. The fluorescence intensity and magnetic properties of the nanocomposites are related to the ratio of ZnS and CoFe2O4. An optomagnetic nanocomposite with small size (12-45 nm), acceptable saturation magnetization (about 6.7 emu g(-1)), and satisfactory luminescence characteristics was successfully synthesized. These systems are promising candidates for biological and photocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据