4.6 Article

Combined experimental-theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 3, 期 46, 页码 12032-12039

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tc03134f

关键词

-

资金

  1. King Abdullah University of Science and Technology

向作者/读者索取更多资源

A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2-xTi2O7-1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2-xTi2O7-1.5x structure with an x value of similar to 0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin-orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons

Prajyot Jayadev Nagtilak, Manoj V. Mane, Supreeth Prasad, Luigi Cavallo, Dean J. Tantillo, Manmohan Kapur

Summary: This study reports the reactivity of propargyl alcohols as Three-Carbon Synthons in a Rh(III)-catalyzed C-H functionalization. This method allows for the efficient synthesis of diverse molecular frameworks, with good functional group tolerance and unique regioselectivity.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

Article Chemistry, Multidisciplinary

Influence of the complete basis set approximation, tight weighted-core, and diffuse functions on the DLPNO-CCSD(T1) atomization energies of neutral H,C,O-compounds

Yury Minenkov, Luigi Cavallo, Kirk A. Peterson

Summary: The impact of complete basis set extrapolation schemes, diffuse functions, and tight weighted core functions on predicted enthalpies of formation via the DLPNO-CCSD(T1) approach has been investigated for neutral H,C,O-compounds. The results show that all tested extrapolation schemes have a mean unsigned deviation below 2 kJ mol(-1) relative to the experiment. The influence of tight weighted core functions on atomization energies is small, and core-valence correlation effects converge at triple-zeta level. The effect of diffuse function augmentation converges slowly and cannot be reproduced accurately with double-zeta or triple-zeta calculations.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2023)

Article Multidisciplinary Sciences

Modulating stereoselectivity in allylic C(sp(3))-H bond arylations via nickel and photoredox catalysis

Long Huang, Marcin Szewczyk, Rajesh Kancherla, Bholanath Maity, Chen Zhu, Luigi Cavallo, Magnus Rueping

Summary: In this study, stereodivergent allylic C(sp(3))-H bond arylations were successfully developed through a systematic investigation of the direction and degree of stereoselectivity in the cross-coupling process. Unlike the typical photosensitized geometrical isomerization of alkenes, the catalytic reaction demonstrated the feasibility of switching the C-C double bond stereoselectivity through ligand control and steric and electronic effects.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

PtII-N-Heterocyclic Carbene Complexes in Solvent-Free Alkene Hydrosilylation

Benon P. Maliszewski, Tahani A. C. A. Bayrakdar, Perrine Lambert, Lama Hamdouna, Xavier Trivelli, Luigi Cavallo, Albert Poater, Marek Belis, Olivier Lafon, Kristof Van Hecke, Dominic Ormerod, Catherine S. J. Cazin, Fady Nahra, Steven P. Nolan

Summary: In this study, the catalytic activity of a series of platinum(II) pre-catalysts with N-heterocyclic carbene (NHC) ligands in the alkene hydrosilylation reaction is reported. The structural and electronic properties of these catalysts are fully characterized using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). A structure-activity relationship within this group of pre-catalysts is established, and mechanistic insights into the catalyst activation step are provided. One of the complexes shows exceptional catalytic performance, achieving a turnover number (TON) of 970,000 and a turnover frequency (TOF) of 40,417 h(-1) at 1 ppm catalyst loading. Furthermore, a solvent-free and open-to-air alkene hydrosilylation protocol with efficient platinum removal (reducing residual Pt from 582 ppm to 5.8 ppm) is disclosed.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

Article Chemistry, Multidisciplinary

Ammonia Synthesis via an Associative Mechanism on Alkaline Earth Metal Sites of Ca3CrN3H

Yu Cao, Ekaterina Toshcheva, Walid Almaksoud, Rafia Ahmad, Tatsuya Tsumori, Rohit Rai, Ya Tang, Luigi Cavallo, Hiroshi Kageyama, Yoji Kobayashi

Summary: In this study, we demonstrate the robust ammonia synthesis activity of the nitride hydride compound Ca3CrN3H, which activates dinitrogen through active sites where calcium provides the primary coordination environment. DFT calculations indicate that an associative mechanism is favored, unlike the dissociative mechanism found in traditional Ru or Fe catalysts. This work showcases the potential of alkaline earth metal hydride catalysts and other related 1D hydride/electrides for ammonia synthesis.

CHEMSUSCHEM (2023)

Article Chemistry, Inorganic & Nuclear

Ambivalent Role of Rotamers in Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Enantioselective Ring-Opening Cross- Metathesis

Jennifer Morvan, Francois Vermersch, Ziyun Zhang, Thomas Vives, Thierry Roisnel, Christophe Crevisy, Laura Falivene, Luigi Cavallo, Nicolas Vanthuyne, Guy Bertrand, Rodolphe Jazzar, Marc Mauduit

Summary: The development of highly efficient enantioselective olefin metathesis catalysts is a major challenge. By using optically pure chiral cyclic (alkyl)(amino)carbene (ChiCAAC) ligands and preliminary mechanistic insights and density functional theory (DFT) computations, it was observed that the formation of rotamers before the enantio-determining step can impair catalytic performances in this field. DFT calculations also demonstrated that these findings can help accelerate ligand discovery by providing faster methods to differentiate potential candidates.

ORGANOMETALLICS (2023)

Article Chemistry, Physical

Theoretical Underpinning of Synergetic Ir/Cu-Metallaphotoredox Catalysis in Multicomponent C-N Cross-Coupling Reactions

Manoj V. Mane, Sayan Dutta, Luigi Cavallo, Bholanath Maity

Summary: In recent years, there has been a growing interest in multicomponent reactions (MCRs) as environmentally friendly and reliable synthetic strategies for drug discovery. This article discusses theoretical investigations that unravel the mechanistic pathways in IrIII-CuII dual-catalyzed MCRs, experimentally reported by MacMillan, and explains the origin of selectivity between three-component and two-component coupling products. The results suggest that N-H bond activation is the rate-limiting step and the preference for a two-component product is governed by the relative stabilities of the CuII-X center dot intermediates.

ACS CATALYSIS (2023)

Article Chemistry, Physical

Acetylene Semi-Hydrogenation on Intermetallic Ni-In Catalysts: Ni Ensemble and Acetylene Coverage Effects from a Theoretical Analysis

Zahra Almisbaa, Hassan A. Aljama, Khalid Almajnouni, Luigi Cavallo, Philippe Sautet

Summary: DFT-based reaction profiles and microkinetic simulations were used to investigate the selective hydrogenation of acetylene on Ni-based intermetallic catalysts. Among the tested catalysts, NiIn showed the highest ethylene yield, while NiIn and Ni2In3 exhibited reduced ethane formation and increased oligomerization compared to Ni and Ni3In. The findings emphasize the importance of considering oligomerization reactions and coverage effects when evaluating the selectivity of catalysts. Additionally, the presence of indium on the catalytic surface was found to decrease the rate of acetylene consumption, highlighting a trade-off between activity and selectivity.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries

Honghong Liang, Zheng Ma, Yuqi Wang, Fei Zhao, Zhen Cao, Luigi Cavallo, Qian Li, Jun Ming

Summary: This study achieves reversible lithium-ion (de)intercalation in a propylene carbonate (PC)-based electrolyte containing a fluoroether by tuning the solvent-solvent interaction, providing an opportunity to enhance the compatibility of PC-based electrolytes with graphite anodes.

ACS NANO (2023)

Article Biochemistry & Molecular Biology

T cell epitope based vaccine design while targeting outer capsid proteins of rotavirus strains infecting neonates: an immunoinformatics approach

Arijit Das Sharma, Ravneet Kaur Grewal, Suresh Gorle, Andres Felipe Cuspoca, Vikas Kaushik, Abdul Rajjak Shaikh, Luigi Cavallo, Mohit Chawla

Summary: Gastrointestinal diarrhea, mainly caused by rotavirus, is a highly contagious disease with high mortality rates, especially in developing countries. The available vaccines have limited efficacy and there are risks associated with vaccination. Therefore, the development of alternative vaccines is necessary.

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS (2023)

Article Chemistry, Organic

Suzuki-Miyaura Cross-Coupling of Amides by N-C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Cl2] Catalysts: Reaction Development, Scope, and Mechanism

Shiyi Yang, Xiang Yu, Yaxu Liu, Michele Tomasini, Lucia Caporaso, Albert Poater, Luigi Cavallo, Catherine S. J. Cazin, Steven P. Nolan, Michal Szostak

Summary: The Suzuki-Miyaura cross-coupling reaction enables the construction of biaryl ketones from inert amide bonds. However, the mechanism of C(acyl)-N bond oxidative addition and catalyst effect in this reaction remain poorly understood. This study investigates the use of [Pd(NHC)(sulfide)Cl-2] catalysts for amide N-C bond activation and presents the reaction development, kinetic studies, and reaction scope. DFT studies were also conducted to gain insight into the mechanism of C(acyl)-N bond oxidative addition and catalyst activation. The results suggest that [Pd(NHC)(sulfide)Cl-2] precatalysts could find application in C(acyl)-X bond activation in organic synthesis and catalysis.

JOURNAL OF ORGANIC CHEMISTRY (2023)

Article Multidisciplinary Sciences

Mechanistic insights into excited-state palladium catalysis for C-S bond formations and dehydrogenative sulfonylation of amines

Krishnamoorthy Muralirajan, Rajesh Kancherla, Bholanath Maity, Safakath Karuthedath, Frederic Laquai, Luigi Cavallo, Magnus Rueping

Summary: In this manuscript, the authors describe the development of excited-state Pd-catalyzed dehydrogenative beta-sulfonylation reactions using amines and aryl sulfonyl chlorides via intermolecular hydrogen atom transfer and C-S cross-coupling processes at room temperature. The reaction efficiently converts amines into stable sulfonyl-substituted enamines and provides evidence for both static and dynamic quenching, as well as inner-sphere and outer-sphere mechanisms.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Inorganic & Nuclear

Gold complexes with remote-substituted amino N-heterocyclic carbenes

Sofie M. P. Vanden Broeck, Nikolaos V. V. Tzouras, Marina Saab, Kristof Van Hecke, Busra Dereli, Ida Ritacco, Luigi Cavallo, Georgios C. C. Vougioukalakis, Pierre Braunstein, Steven P. P. Nolan, Andreas A. A. Danopoulos, Catherine S. J. Cazin

Summary: The 4-RN-1,3-Ar-2-imidazolium salt, R = iPr, tBu, Ar = Mes, Dipp, underwent metalation by Au-I at the C2-, C5-, and 4-RN positions, depending on the reactants and conditions used. A rare direct rearrangement of the Au-I aminide to an abnormal imidazol-5-ylidene Au-I complex was also observed, which may involve TfO- facilitated H+ transfer, according to a DFT study.

DALTON TRANSACTIONS (2023)

Article Chemistry, Inorganic & Nuclear

Simple synthetic access to [Au(IBiox)Cl] complexes

Ekaterina A. Martynova, Marco Zuccarello, Domenic Kronenberg, Marek Belis, Agnieszka Czapik, Ziyun Zhang, Kristof Van Hecke, Marcin Kwit, Olivier Baudoin, Luigi Cavallo, Steven P. Nolan

Summary: Green and sustainable access to chiral and achiral gold-IBiox complexes is achieved through a simple and air-tolerant synthesis method using a green solvent. The catalytic activity of these complexes in the hydroamination of alkynes is examined, and their steric protection of the gold center is compared with commonly encountered NHCs using the %V-bur model.

DALTON TRANSACTIONS (2023)

Article Chemistry, Physical

Bio-inspired Halogen Bonding-Promoted Cross Coupling for the Synthesis of Organoselenium Compounds

Bo Li, Liang Yi, Bholanath Maity, Jiaqi Jia, Yuqin Shen, Xiang-Yu Chen, Luigi Cavallo, Magnus Rueping

Summary: Noncovalent interactions, particularly halogen bonding, play a crucial role in organic synthesis and catalysis, including the synthesis of organoselenium compounds. By utilizing the reaction balance between an electron donor-acceptor complex and Ph2Se2, the halogen bonding interaction facilitates the formation of C-Se bonds through the capture of alkyl radicals. This synthetic strategy has been successfully applied in the transformation of various carboxylic acids, natural products, drugs, and alpha-selenoamino acids.

ACS CATALYSIS (2023)

Article Materials Science, Multidisciplinary

Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophores into polar polymer matrix

Mengjiao Dong, Liyun Liao, Chensheng Li, Yingxiao Mu, Yanping Huo, Zhong-Min Su, Fushun Liang

Summary: This study investigates the influence of the polarity of polymer matrices on persistent room-temperature phosphorescence (pRTP). It is discovered that intense phosphorescence emission can be achieved in highly polar matrices such as polyacrylic acid (PAA). The dipole-dipole interaction between the polar fluorophore and polar matrix is proposed to stabilize the excited state and facilitate the generation of efficient room-temperature phosphorescence emissions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

High spatial resolution X-ray scintillators based on a 2D copper(i) iodide hybrid

Han-Jiang Yang, Weijia Xiang, Xiangzhou Zhang, Jin-Yun Wang, Liang-Jin Xu, Zhong-Ning Chen

Summary: This article reports a 2D copper(I)-based cluster material for X-ray imaging, which exhibits ultra-high spatial resolution, high photoluminescence efficiency, and low detection limit. The material shows excellent linear response to X-ray dose rates and light output, and has the best spatial resolution among reported lead-free metal halide hybrids.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Review Materials Science, Multidisciplinary

Interlayer and intermolecular excitons in various donor-acceptor heterostructures: applications to excitonic devices

Taek Joon Kim, Sang-hun Lee, Dayeong Kwon, Jinsoo Joo

Summary: Donor-acceptor heterostructures using organic-inorganic halide perovskites, two-dimensional transition metal dichalcogenides, pi-conjugated organic small/macro molecules, and quantum dots are promising platforms for exciton-based photonics and optoelectronics. Hetero-interlayer excitons and hetero-intermolecular excitons formed through optical and/or electrical charge transfer in various heterostructures are important quasi-particles for light emission, detection, and harvesting systems.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Designing CMOS compatible efficient ohmic contacts to WSi2N4 via surface-engineered Mo2B monolayer electrodes

Liemao Cao, Xiaohui Deng, Zhen-kun Tang, Rui Tan, Yee Sin Ang

Summary: We investigate the interface properties between WSi2N4 and Mo2B, O-modified Mo2B, and OH-modified Mo2B nanosheets. We find that WSi2N4 and Mo2B form n-type Schottky contacts, while functionalizing Mo2B with O and OH leads to the formation of both n-type and p-type ohmic contacts with WSi2N4. Additionally, we demonstrate the emergence of quasi-ohmic contact with ultralow lateral Schottky barrier and zero vertical interfacial tunneling barriers in Mo2B(OH)2-contacted WSi2N4.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, Minwoo Park

Summary: This study presents a solution to the commercialization challenges of flexible LEDs based on MAPbBr(3) by incorporating polyurethane and an In-Ga-Zn-Sn liquid alloy. The designed devices showed high flexibility, efficiency, and durability, with improved electron injection and reduced defects, making them promising for next-generation displays.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Elucidating the effects of the sidechain substitution direction on the optoelectronic properties of isomeric diketopyrrolopyrrole-based conjugated polymers for near-infrared organic phototransistors

Tao Shen, Zeng Wu, Zhen Jiang, Dongsheng Yan, Yan Zhao, Yang Wang, Yunqi Liu

Summary: Sidechain engineering is an important molecular design strategy for tuning the solid-state packing and structural ordering of conjugated polymers. The effects of sidechain direction on the optoelectronic properties of polymers and device performance were systematically investigated in this study. The results demonstrate that tuning the sidechain substitution direction can effectively improve the molecular structure and light absorption properties of polymers, providing new insights for the rational design of functional polymers.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Phase-engineering compact and flexible CsPbBr3 microcrystal films for robust X-ray detection

Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye

Summary: In this study, a facile strategy using a non-conductive polymer was proposed to fabricate stable, pinhole-free thick films. The effect of introducing a second phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport was investigated. The dual phase devices exhibited improved stability and more effective operation at higher voltages in X-ray detection.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Photoluminescence and structural phase transition relationship in Er-doped BaTiO3 model ferroelectric system

Jingye Zou, Shenglan Hao, Pascale Gemeiner, Nicolas Guiblin, Omar Ibder, Brahim Dkhil, Charles Paillard

Summary: When rare-earth ions are embedded in a ferroelectric material, their photoluminescence can serve as an all-optical probe for temperature, electric field, and mechanical stimulus. However, the impact of ferroelectric phase transitions on photoluminescence is not well understood. In this study, we demonstrate changes in the photoluminescence of green emission bands during critical ferroelectric transitions in an Er-doped BaTiO3 material. We also find that the intensity ratio and wavelength position difference of sub-peaks provide information on the phase transitions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Jiangchao Han, Daming Zhou, Wei Yang, Chen Lv, Xinhe Wang, Guodong Wei, Weisheng Zhao, Xiaoyang Lin, Shengbo Sang

Summary: Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Design of Cr-Ba-doped γ-Ga2O3 persistent luminescence nanoparticles for ratiometric temperature sensing and encryption information transfer

Tianqi Zhao, Renagul Abdurahman, Qianting Yang, Ruxiangul Aiwaili, Xue-Bo Yin

Summary: In this study, we designed and prepared Cr and Ba-doped gamma-Ga2O3 nanoparticles to achieve near-infrared emission and enhance the emission intensity. The emission mechanism was proposed based on the trap depth, band gap, and energy levels of Cr ions. The ratiometric temperature sensing and encryption information transfer demonstrated the potential applications of this technology.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Spin-gapless semiconducting characteristics and related band topology of quaternary Heusler alloy CoFeMnSn

Shuvankar Gupta, Jyotirmoy Sau, Manoranjan Kumar, Chandan Mazumdar

Summary: In this study, a new spin-gapless semiconductor material CoFeMnSn is reported, and its stable structure and spin-polarized band structure are determined through experimental realization and theoretical calculations. The compound exhibits a high ferromagnetic transition temperature, making it excellent for room temperature applications. The nearly temperature-independent resistivity, conductivity, and carrier concentration of the compound, adherence to the Slater-Pauling rule, and the high intrinsic anomalous Hall conductivity achieved through hole doping further confirm its spin-gapless semiconductor nature. Additionally, the compound's SGS and topological properties make it suitable for spintronics and magneto-electronics devices.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Two-dimensional metal-organic nanosheets composed of single-molecule magnets: structural modulation and enhanced magnetism utilizing the steric hindrance effect

Ikumi Aratani, Yoji Horii, Yoshinori Kotani, Hitoshi Osawa, Hajime Tanida, Toshiaki Ina, Takeshi Watanabe, Yohko F. Yano, Akane Mizoguchi, Daisuke Takajo, Takashi Kajiwara

Summary: In this study, two-dimensional arrays of single-molecule magnets (SMMs) based on metal-organic frameworks (MOFs) were systematically modified through Langmuir-Blodgett methods and chemical modifications. The introduction of bulky alkoxide groups induced structural changes and perpendicular magnetic anisotropy. This research provides a promising strategy for the construction of high-density magnetic memory devices using molecular spintronics.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Eulytite-type Ba3Yb(PO4)3:Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range

Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong

Summary: Researchers have successfully developed four different up-conversion phosphors based on the Eulytite-type host Ba3Yb(PO4)(3). The optical temperature sensing properties of these phosphors were thoroughly investigated, and it was found that Ba3Yb(PO4)(3):Tm/Er/Ho showed potential for optical temperature measurement applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Arino, I. de P. R. Moreira, M. Deumal

Summary: This study computationally investigates the conductivity of four isostructural compounds with different Se contents, and reveals the parameters that define their conductivity in stable organic radical materials. The results provide insights into the influence of Se content on the conductivity and highlight the importance of considering multiple parameters in understanding the trends in conductivity.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Interplay between oxygen vacancies and cation ordering in the NiFe2O4 spinel ferrite

Remi Arras, Kedar Sharma, Lionel Calmels

Summary: In this study, we investigated the interplay between structural defects in NiFe2O4, showing that the complex formed by a Ni-Oh/Fe-Td-cation swap and a neutral oxygen vacancy is more stable than these two isolated defects, and significantly reduces the width of the minority-spin band gap.

JOURNAL OF MATERIALS CHEMISTRY C (2024)