4.8 Article

Gold-catalyzed conversion of lignin to low molecular weight aromatics

期刊

CHEMICAL SCIENCE
卷 9, 期 42, 页码 8127-8133

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc03208d

关键词

-

资金

  1. National Science Foundation [1355438]
  2. Global Bioenergy, Biofuels, and Biorefining network (GB3-Net) - British Council
  3. Department for Business, Innovation and Skills (BIS)
  4. DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494, DE-SC0018409]

向作者/读者索取更多资源

A heterogeneous catalyst system, employing Au nanoparticles (NPs) and Li-Al (1:2) layered double hydroxide (LDH) as support, showed excellent activity in aerobic oxidation of the benzylic alcohol group in beta-O-4 linked lignin model dimers to the corresponding carbonyl products using molecular oxygen under atmospheric pressure. The synergistic effect between Au NPs and the basic Li-Al LDH support induces further reaction of the oxidized model compounds, facilitating facile cleavage of the beta-O-4 linkage. Extension to oxidation of gamma-valerolactone (GVL) extracted lignin and kraft lignin using Au/Li-Al LDH under similar conditions produced a range of aromatic monomers in high yield. Hydrolysis of the Au/Li-Al LDH oxidized lignin was found to increase the degree of lignin depolymerization, with monomer yields reaching 40% for GVL extracted lignin. Based on these results, the Au/Li-Al LDH + O-2 catalyst system shows potential to be an environmentally friendly means of depolymerizing lignin to low molecular weight aromatics under mild conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Enhanced Thermoelectric Properties of a Semiconducting Two-Dimensional Metal-Organic Framework via Iodine Loading

Maria de Lourdes Gonzalez-Juarez, Mark A. Isaacs, Darren Bradshaw, Iris Nandhakumar

Summary: In this study, molecular iodine was incorporated into a two-dimensional semiconducting metal-organic framework (MOF) Cu3(2,3,6,7,10,11-hexahy-droxytriphenylene)2 Cu3(HHTP)2 via incipient wetness impregnation to enhance its thermoelectric properties. A power factor of 0.757 mu W m-1 K-2 was obtained for this MOF, demonstrating an effective route for the preparation of moderate-performance thermoelectric MOFs.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Broad spectrum antibacterial zinc oxide-reduced graphene oxide nanocomposite for water depollution

P. Rajapaksha, R. Orrell-Trigg, D. Shah, S. Cheeseman, K. B. Vu, S. T. Ngo, B. J. Murdoch, N. R. Choudhury, H. Yin, D. Cozzolino, Y. B. Truong, A. F. Lee, V. K. Truong, J. Chapman

Summary: Antimicrobial resistance is a global health challenge, which requires innovative nanomaterials and antimicrobial strategies. In this study, a broad-spectrum antimicrobial nanomaterial combining light-responsive ZnO nanoparticles and reduced graphene oxide was developed for water depollution. The nanocomposite demonstrated strong antimicrobial efficacy against methicillin-resistant Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium bacteria, and also showed potential for photocatalytic degradation of dye.

MATERIALS TODAY CHEMISTRY (2023)

Article Nanoscience & Nanotechnology

Humin Formation on SBA-15-pr-SO3H Catalysts during the Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate: Effect of Pore Size on Catalyst Stability, Transport, and Adsorption

Graziano Di Carmine, Costanza Leonardi, Luke Forster, Min Hu, Daniel Lee, Christopher M. A. Parlett, Olga Bortolini, Mark A. Isaacs, Alessandro Massi, Carmine D'Agostino

Summary: The alcoholysis of furfuryl alcohol in SBA-15-pr-SO3H catalysts with different pore sizes was studied. Results showed that changes in pore size have a significant effect on catalyst activity and durability, with larger-pore-size catalysts deactivating more rapidly. The presence of SO3H groups on the external surface and reduced pore clogging were identified as factors contributing to the increased reusability of smaller-pore-size catalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Engineering, Environmental

A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions

Pablo Jimenez-Calvo, Mario J. Munoz-Batista, Mark Isaacs, Vinavadini Ramnarain, Dris Ihiawakrim, Xiaoyan Li, Miguel Angel Munoz-Marquez, Gilberto Teobaldi, Mathieu Kociak, Erwan Paineau

Summary: The configuration and geometry of chemical reactors significantly impact performance evaluation and the development of thermodynamic and kinetic model reactions for photocatalytic materials. Lack of accurate transport profiles for mass, heat, and photons in photochemical reactors hinders comparison between experiments and standardization. This study proposes a compact stainless-steel photoreactor for hydrogen photoproduction and uses TiO2 Schottky junctions with Pd, Pt, or Au nanoparticles to validate the reactor's operation. Results show improved profiles and increased quantum yields compared to previous studies.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Substrate Morphology Directs (001) Sb2Se3 Thin Film Growth by Crystallographic Orientation Filtering

Joao Otavio Mendes, Andrea Merenda, Karen Wilson, Adam Fraser Lee, Enrico Della Gaspera, Joel van Embden

Summary: The growth of (001) oriented antimony chalcogenide thin films can be controlled by tuning the substrate nanostructure, which is crucial for enhancing the performance of these films.
Review Chemistry, Physical

Perovskite Catalysts for Biomass Valorization

Hamidreza Arandiyan, Putla Sudarsanam, Suresh K. Bhargava, Adam F. Lee, Karen Wilson

Summary: Biomass is a renewable energy source that is being increasingly utilized due to concerns about climate change caused by fossil fuel consumption. Waste biomass-derived fuels and chemicals offer a solution to reduce reliance on fossil fuels and achieve "Net Zero 2050 CO2 emissions" with environmental, health, and economic benefits. This review focuses on the use of perovskite oxide catalysts for biomass valorization, discussing their structure-reactivity relationships in various reactions. The study highlights the prospects and challenges for the broader application of perovskite oxide catalysts in biomass valorization.

ACS CATALYSIS (2023)

Article Chemistry, Physical

Empowering Catalyst Supports: A New Concept for Catalyst Design Demonstrated in the Fischer-Tropsch Synthesis

Motlokoa Khasu, Wijnand Marquart, Patricia J. Kooyman, Charalampos Drivas, Mark A. Isaacs, Alexander J. Mayer, Sandie E. Dann, Simon A. Kondrat, Michael Claeys, Nico Fischer

Summary: The Fischer-Tropsch synthesis, traditionally associated with fossil fuel consumption, has now emerged as a key technology for converting captured CO2 and sustainable hydrogen into energy-dense fuels and chemicals. Iron-based FT catalysts with alkali and transition metal promoters show improved reducibility, activity, and selectivity. The exact speciation and location of these promoters, however, remain poorly understood.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Synthesis and catalytic advantage of a hierarchical ordered macroporous KIT-6 silica

Sabina Siles-Quesada, Christopher M. A. Parlett, Alexander C. Lamb, Jinesh C. Manayil, Yang Liu, Jim Mensah, Hamidreza Arandiyan, Karen Wilson, Adam F. Lee

Summary: Researchers successfully synthesized an ordered macroporous KIT-6 material with 370nm macropores, a face-centered cubic Ia3d structure, and 5nm mesopore channels. After functionalization, this material allows rapid diffusion and esterification of fatty acids. Compared with traditional mesoporous PrSO3H/KIT-6, the esterification rate of fatty acids increased by 5 times, and it also showed a 33% enhancement compared with ordered macroporous PrSO3H/SBA-15.

MATERIALS TODAY CHEMISTRY (2023)

Review Energy & Fuels

Graphene Quantum Dots for Photocatalytic CO2 Reduction

Prince J. J. Sagayaraj, Ashil Augustin, Mariyappan Shanmugam, Brahmari Honnappa, Thillai Sivakumar Natarajan, Karen Wilson, Adam F. Lee, Karthikeyan Sekar

Summary: This review discusses the sustainable production of solar fuels through reduction of molecular CO2 using photocatalysts, emphasizing the importance of this approach for controlling global warming. The unique properties of graphene quantum dots (GQD), such as enhanced solar light absorption and high photocatalytic efficiency, are highlighted. Additionally, the challenges and future outlook of GQD-based photocatalytic systems for solar fuels production are presented.

ENERGY TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Impact of doping ZrO2 with Sn on CO2 hydrogenation over dispersed Ru

Jiajia Zhao, Yuan Wang, Hamidreza Arandiyan, Anita M. D'Angelo, Aaron Seeber, Daksh Shah, Rachel A. Caruso, Ivan S. Cole, Yunxia Yang, Karen Wilson, Renata Lippi, Adam F. Lee

Summary: We demonstrate how subtle changes in a mixed phase zirconia support induce large changes in catalyst activity and selectivity. Ru/Sn0.2Zr0.8O2 catalyst exhibited similar structrue and metal ion distribution as Ru/ZrO2, but XRD evidence showed new crystalline phases where Sn substituted for Zr. Operando infrared spectroscopy identified linear surface CO* as a catalytic spectator, and Sn0.2Zr0.8O2 promoted CO2 decomposition, favoring a reverse water gas shift pathway.

MATERIALS TODAY CHEMISTRY (2023)

Correction Chemistry, Physical

WOx/ZrOx functionalised periodic mesoporous organosilicas as water-tolerant catalysts for carboxylic acid esterification (vol 7, pg 1677, 2023)

Vannia C. dos Santos-Durndell, Lee J. Durndell, Mark A. Isaacs, Adam F. Lee, Karen Wilson

SUSTAINABLE ENERGY & FUELS (2023)

Article Chemistry, Multidisciplinary

Ammonium fluoride additive-modified interphase chemistry stabilizes zinc anodes in aqueous electrolytes

Wei Zhang, Xian Wu, Qingjin Fu, Haotian Qu, Joanna Borowiec, Mark Isaacs, Guangmin Zhou, Ivan P. Parkin, Guanjie He

Summary: This study reports the use of ammonium fluoride as an additive in zinc sulfate electrolyte to enhance zinc anodes. The formation of electrostatic shielding layer and ZnF2-rich solid-state interphase layer can effectively inhibit side reactions and dendrite growth, leading to improved performance in zinc cells.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Physical

XPS surface analysis of ceria-based materials: Experimental methods and considerations

Mark A. Isaacs, Charalampos Drivas, Roxy Lee, Robert Palgrave, Christopher M. A. Parlett, David J. Morgan

Summary: This study focuses on the best practice for experimental construction when approaching the task of understanding chemical environments in cerium-based materials by XPS.

APPLIED SURFACE SCIENCE ADVANCES (2023)

Article Chemistry, Physical

Low temperature XPS of sensitive molecules: Titanium butoxide photoelectron spectra

Mark A. Isaacs

Summary: XPS analysis of soft materials is challenging due to sample degradation. Using correct protocols during experimental spectral acquisition minimizes errors and improves scientific understanding. XPS spectra of titanium butoxide serve as a valuable reference for studying alkoxide-based metal oxide and mixed-metal oxide functional systems.

APPLIED SURFACE SCIENCE ADVANCES (2023)

Article Chemistry, Multidisciplinary

Iodide oxidation by ozone at the surface of aqueous microdroplets

Alexander M. Prophet, Kritanjan Polley, Gary J. Van Berkel, David T. Limmer, Kevin R. Wilson

Summary: The oxidation kinetics of iodide by ozone at the air-water interface is studied in single microdroplets. Molecular simulations and kinetic modeling are used to understand the underlying multiphase mechanism.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Aggregate assembly of ferrocene functionalized indium-oxo clusters

Rong Zhang, Jiajing Lan, Fei Wang, Shumei Chen, Jian Zhang

Summary: By utilizing 1,1'-ferrocene dicarboxylic acid as a chelating and surface protection ligand, we have synthesized multi-nuclear indium oxide clusters with varying nuclear sizes, including heptanuclear and thirteen-nuclear clusters. These clusters possess labile coordination sites, allowing for structural modification and self-assembly, resulting in the formation of various cluster structures.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Cucurbituril-based supramolecular host-guest complexes: single-crystal structures and dual-state fluorescence enhancement

Hui Wang, Hui Liu, Mingsen Wang, Jiaheng Hou, Yongjun Li, Yuancheng Wang, Yingjie Zhao

Summary: Two supramolecular complexes were prepared using CBs and M1, and their single-crystal structures were analyzed by SCXRD. The unexpected 1:2 self-assembly structure between M1 and CB[8] was discovered for the first time. These complexes exhibit unique photophysical properties and provide valuable information about the structure and photophysical properties of supramolecular complexes.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Engineering of cell-surface receptors for analysis of receptor internalization and detection of receptor-specific glycosylation

Chang-Hee Lee, Sookil Park, Sanggil Kim, Ji Young Hyun, Hyun Soo Lee, Injae Shin

Summary: The epidermal growth factor receptor (EGFR) is a cell-surface glycoprotein involved in cell proliferation and tumor development. This study used a fluorescently labeled EGFR to investigate its time-dependent endocytosis in live cells and found that appended glycans affect EGFR internalization. Additionally, the study detected sialic acid residues attached to EGFR on the live cell surface using FRET-based imaging. This research provides valuable insights into the cellular functions of EGFR.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Ultrasensitive detection of aromatic water pollutants through protein immobilization driven organic electrochemical transistors

Subhankar Sahu, Lokesh Kumar, Sumita Das, Dipti Gupta, Ruchi Anand

Summary: This study proposes a strategy that combines organic electronics with biosensor scaffolds to create a compact device for monitoring environmental aromatic pollution. By coupling biosensing protein MopR with an organic electrochemical transistor (OECT), a sensor module capable of efficient detection of phenol was designed. Exclusive phenol detection with minimal loss of sensitivity could be achieved in complex pollutant mixtures and real environmental samples.

CHEMICAL SCIENCE (2024)

Review Chemistry, Multidisciplinary

NiH-catalyzed C-N bond formation: insights and advancements in hydroamination of unsaturated hydrocarbons

Changseok Lee, Hyung-Joon Kang, Sungwoo Hong

Summary: The formation of C-N bonds through hydroamination reactions catalyzed by nickel hydrides has been a topic of recent interest. This approach offers a way to efficiently transform a variety of alkene and alkyne substrates into compounds enriched with C-N bonds. The review provides a concise overview of the underlying reaction mechanisms and aims to stimulate further progress in NiH-catalytic techniques and catalyst design.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Selective FRET nano probe based on carbon dots and naphthalimide-isatin for the ratiometric detection of peroxynitrite in drug-induced liver injury

Yueci Wu, Lu-Lu Sun, Hai-Hao Han, Xiao-Peng He, Weiguo Cao, Tony D. James

Summary: Drug-induced liver injury (DILI) is a common cause of acute liver failure in the USA and Europe, but most cases can be recovered or prevented by discontinuing the offending drug. Recent research has found that peroxynitrite (ONOO-) can be used as a potential indicator for early diagnosis of DILI, and there is an urgent need to establish a method to detect and track peroxynitrite in DILI cases. In this study, a FRET-based nano fluorescent probe CD-N-I was developed, which showed high selectivity and sensitivity in detecting peroxynitrite. The probe successfully detected exogenous peroxynitrite in live cells and endogenous peroxynitrite in APAP-induced liver injury of HepG2 cells.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage

Dmitry L. Lipilin, Mikhail O. Zubkov, Mikhail D. Kosobokov, Alexander D. Dilman

Summary: This article describes a direct photocatalytic method for the thiolation of unprotected acids, which was previously challenging. By using a thionocarbonate reagent with an N-O bond, the efficient conversion of carboxylic acids to thiols is achieved.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Towards routine organic structure determination using Raman microscopy

Jason Malenfant, Lucille Kuster, Yohann Gagne, Kouassi Signo, Maxime Denis, Sylvain Canesi, Mathieu Frenette

Summary: Raman microscopy can reveal compound-specific vibrational fingerprints without sample preparation. The combination of efficient theoretical calculations and a user-friendly software can accurately predict peak positions and provide match scores to assist with structure determination.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from Helicobacter pylori

Jayoh A. Hernandez, Paul S. Micus, Sean Alec Lois Sunga, Luca Mazzei, Stefano Ciurli, Gabriele Meloni

Summary: Essential trace metals play crucial roles in the survival and virulence of bacterial pathogens. Helicobacter pylori requires nickel for colonization and persistence in the stomach, and NixA is an essential nickel transporter in this process. This study characterizes the selectivity and electrogenic nature of NixA-mediated nickel transport.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

A high-spin alkylperoxo-iron(III) complex with cis-anionic ligands: implications for the superoxide reductase mechanism

Tarali Devi, Kuheli Dutta, Jennifer Deutscher, Stefan Mebs, Uwe Kuhlmann, Michael Haumann, Beatrice Cula, Holger Dau, Peter Hildebrandt, Kallol Ray

Summary: This study emphasizes the importance of subtle electronic changes and secondary interactions in the stability of biologically relevant metal-dioxygen intermediates. It also shows that the role of the chloride ligand in stabilizing the Fe-III-(OOBu)-Bu-t moiety can extend to other anions, including the thiolate ligand.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein

Jacqueline R. Santhouse, Jeremy M. G. Leung, Lillian T. Chong, W. Seth Horne

Summary: By studying the folding kinetics and mechanism of the BdpA sequence, researchers found that altering the backbone connectivity can affect protein folding. This suggests that protein mimetic chains have a significant degree of plasticity in transitioning between unfolded and folded states.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Strain induced reactivity of cyclic iminoboranes: the (2+2) cycloaddition of a 1H-1,3,2-diazaborepine with ethene

Divanshu Gupta, Ralf Einholz, Holger F. Bettinger

Summary: This study presents the first direct spectroscopic evidence of a cyclic seven-membered iminoborane. Compared to linear amino-iminoboranes, this cyclic iminoborane exhibits weakened bond strength and lower Lewis acidity value. The study suggests that the reduced ring strain of cyclic iminoborane prevents nitrogen fixation but allows facile (2 + 2) cycloaddition reaction with C2H4.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach

Renny Mathew, Aniruddha Mazumder, Praveen Kumar, Julie Matula, Sharmarke Mohamed, Petr Brazda, Mahesh Hariharan, Brijith Thomas

Summary: This study reveals the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI) using a synergistic approach that combines 3D ED, ssNMR, and DFT techniques. By overcoming these challenges, this methodology opens up new avenues for material characterization, driving exciting advancements in the field.

CHEMICAL SCIENCE (2024)