4.6 Article

Integrated nanocatalysts: a unique class of heterogeneous catalysts

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 16, 页码 8241-8245

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta00119f

关键词

-

向作者/读者索取更多资源

Nanoparticles are regarded as attractive candidates for heterogeneous catalysis in various imperative catalytic processes as they are now easy to prepare with a desired size, structure, morphology and composition. Advanced integrated nanocatalysts (INCs) are considered to be a new class of heterogeneous catalysts distinctly different from the conventional ones. INCs are multicomponent materials with a nanoarchitecture typically designed by incorporating nanoparticles into a defined matrix. Thus, INCs can exhibit various morphologies depending on the targeted catalytic process and the type of the immobilized catalyst. In this highlight, we would like to demonstrate the sophisticated nanoarchitecture, synthetic approaches and unique catalytic properties of specifically selected INCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Multidisciplinary

Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles

Maomao Xie, Meng Gao, Yang Yun, Martin Malmsten, Vincent M. M. Rotello, Radek Zboril, Omid Akhavan, Aliaksandr Kraskouski, John Amalraj, Xiaoming Cai, Jianmei Lu, Huizhen Zheng, Ruibin Li

Summary: Antimicrobial resistance (AMR) is a major threat to the environment and health, and antimicrobial nanomaterials are being explored as alternatives to conventional antibiotics. Some antimicrobial nanomaterials show AMR-independent antimicrobial effects, while others trigger the evolution of AMR. This review compares the mechanisms and relationships of antibiotics and antimicrobial nanomaterials, examines nano-microbe interactions, and provides an outlook on future antimicrobial nanomaterials.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Covalently Interlayer-Confined Organic-Inorganic Heterostructures for Aqueous Potassium Ion Supercapacitors

Jianping Chen, Bin Liu, Hang Cai, Shude Liu, Yusuke Yamauchi, Seong Chan Jun

Summary: This study develops a covalently interlayer-confined organic-inorganic hybrid for improving the reaction kinetics of supercapacitors. The covalent assembly facilitates cross-layer electron transfer, increases active sites, and enhances the specific capacitance and rate capability of the hybrid material.
Article Chemistry, Multidisciplinary

Extraordinary Acceleration of an Electrophilic Reaction Driven by the Polar Surface of 2D Aluminosilicate Nanosheets

Nagy L. Torad, Yuta Tsuji, Azhar Alowasheeir, Masako Momotake, Kazuki Okazawa, Kazunari Yoshizawa, Michio Matsumoto, Masafumi Yamato, Yusuke Yamauchi, Miharu Eguchi

Summary: To increase chemical reaction rates, general solutions include increasing the concentration/temperature and introducing catalysts. In this study, the rate constant of an electrophilic metal coordination reaction is accelerated 23-fold on the surface of layered aluminosilicate (LAS), where the reaction substrate (ligand molecule) induces dielectric polarization owing to the polar and anionic surface. This unique method to accelerate the chemical reaction is expected to expand the range of utilization of LASs, which are chemically inert, abundant, and environmentally friendly. The concept is also applicable to other metal oxides which have polar surfaces, which will be useful for various chemical reactions in the future.
Article Chemistry, Physical

Waste PET upcycling to conductive carbon-based composite through laser-assisted carbonization of UiO-66

Dmitry Kogolev, Oleg Semyonov, Nadezhda Metalnikova, Maxim Fatkullin, Raul D. D. Rodriguez, Petr Slepicka, Yusuke Yamauchi, Olga Guselnikova, Rabah Boukherroub, Pavel S. S. Postnikov

Summary: We propose utilizing laser-assisted carbonization of surface-grown UiO-66 to diversify the upcycling of waste PET into materials with enhanced photothermal properties. A solvo-thermal procedure was used to form a homogeneous UiO-66 layer on recycled PET sheets. Treatment with a 405 nm laser system enabled the formation of a carbonaceous layer with improved electrical conductivity and photothermal properties due to the presence of zirconium carbide and graphene. This approach presents new possibilities for the application of upcycled PET-based materials.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

A phenazine-conjugated microporous polymer-based quartz crystal microbalance for sensitive detection of formaldehyde vapors at room temperature: an experiment and density functional theory study

Mohammed G. Kotp, Nagy L. Torad, Johann Luder, Ahmed A. M. El-Amir, Watcharop Chaikittisilp, Yusuke Yamauchi, Ahmed F. M. EL-Mahdy

Summary: In this study, two novel phenazine-based CMPs, TPT-QP CMPs and Py-QP CMPs, were successfully synthesized through the Suzuki coupling condensation reaction. These CMPs have high surface areas and good thermal stabilities. TPT-QP CMPs, in particular, have abundant hydrogen-bonding sites and demonstrate high sensitivity and selectivity in detecting sub-ppm levels of volatile acidic hydrocarbons. Additionally, a quartz crystal microbalance (QCM) sensor based on TPT-QP CMPs was fabricated for the first time, showing excellent performance in detecting trace amounts of formaldehyde.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Enlarging the porosity of metal-organic framework-derived carbons for supercapacitor applications by a template-free ethylene glycol etching method

Ruijing Xin, Minjun Kim, Ping Cheng, Aditya Ashok, Silvia Chowdhury, Teahoon Park, Azhar Alowasheeir, Md Shahriar Hossain, Jing Tang, Jin Woo Yi, Yusuke Yamauchi, Yusuf Valentino Kaneti, Jongbeom Na

Summary: Hierarchically porous bimetallic zeolitic imidazolate framework (ZIF) particles (etched Zn33Co67-ZIF) were designed and prepared through an ethylene glycol-assisted aqueous etching method, which effectively increased their pore size and surface area. After thermal treatment, the etched Zn33Co67-ZIF particles transformed into cobalt and nitrogen co-doped hierarchically porous carbon (etched Zn33Co67-C), which exhibited increased mesoporosity and specific capacitance compared to the unetched one. The presented ethylene glycol-assisted aqueous etching process provides a facile template-free strategy for improving the energy storage performance of MOFs and their corresponding porous carbons.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Nanoscience & Nanotechnology

Photocatalytic One-Pot Conversion of Aldehydes to Esters and Degradation of Rhodamine B Dye Using Mesoporous Graphitic Carbon Nitride

Rahul P. Gaikwad, Dhanaji R. Naikwadi, Ankush V. Biradar, Manoj B. Gawande

Summary: This study investigates the role of mesoporous graphitic carbon nitride (mpg-C3N4) photocatalyst in the esterification of substituted benzaldehyde under visible light irradiation at room temperature without any additives. The mpg-C3N4 material, characterized by various techniques, exhibits high surface area, porosity, medium band gap, and nanowire-like shape. These properties enhance the photocatalytic activity of mpg-C3N4 towards the esterification reaction.

ACS APPLIED NANO MATERIALS (2023)

Article Chemistry, Physical

Safety assessment of graphene acid and cyanographene: Towards new carbon-based nanomedicine

Tomas Malina, Cordula Hirsch, Alexandra Rippl, David Panacek, Katerina Polakova, Veronika Sedajova, Magdalena Scheibe, Radek Zboril, Peter Wick

Summary: Graphene oxide (GO) is a promising delivery nanoplatform, but its non-specific surface properties and heterogeneity in stability limit its commercial application. Evaluating the interaction of emerging graphene derivatives with endothelial and immune cells is important. The study demonstrated that graphene acid (GA) and cyanographene (GCN) have better biocompatibility and potential for drug/gene delivery compared to GO.

CARBON (2023)

Article Chemistry, Multidisciplinary

Unlocking Enhanced Capacitive Deionization of NaTi2(PO4)3/Carbon Materials by the Yolk-Shell Design

Xiaohong Liu, Xingtao Xu, Xiaoxu Xuan, Wei Xia, Guilin Feng, Shuaihua Zhang, Zhen-Guo Wu, Benhe Zhong, Xiaodong Guo, Keyu Xie, Yusuke Yamauchi

Summary: In this study, a yolk-shell nanoarchitecture of NASICON-structured NTP/C materials (ys-NTP@C) was developed using a metal-organic framework@ covalent organic polymer (MOF@COP) as a sacrificial template and space-confined nanoreactor. ys-NTP@C exhibited good CDI performance with high salt adsorption capacities (SACs) and good cycling stability. This study provides a new synthetic paradigm for preparing yolk-shell structured materials and highlights the potential use of yolk-shell nanoarchitectures for electrochemical desalination.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Engineering, Chemical

Hybrid of pyrazine based π-conjugated organic molecule and MXene for hybrid capacitive deionization

Zeqiu Chen, Xingtao Xu, Kai Wang, Dong Jiang, Fanyue Meng, Ting Lu, Yusuke Yamauchi, Likun Pan

Summary: In this study, a hybrid material of pyrazine-based pi-conjugated organic molecule, hexaazatrinaphthalene (HATN), and MXene was reported. The combination of MXene as a conductive substrate and HATN as an electroactive material resulted in a unique 3D structure with increased ion transport channels, leading to enhanced charge transfer and ion diffusion rates. The obtained HATN/MXene composite exhibited a high desalination capacity of 57.5 mg g(-1), a fast desalination rate of 13.2 mg g(-1) min(-1), and good long-term stability. This work provides valuable insights for the design and application of organic molecules in the field of capacitive deionization.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Review Chemistry, Physical

Photocatalytic Transfer Hydrogenation Reactions Using Water as the Proton Source

En Zhao, Wenjun Zhang, Lin Dong, Radek Zboril, Zupeng Chen

Summary: Transfer hydrogenation using liquid hydrogen carriersas the direct proton sources under mild conditions has attracted considerable attention in the field of organic synthesis. Photocatalytic water-donating transfer hydrogenation (PWDTH) has emerged as an eco-friendly alternative to conventional hydrogenation technology. This paper discusses recent advances in PWDTH reactions, including the mechanism of hydrogen transfer and the design principles of efficient photocatalysts. It also explores the current challenges and future opportunities in this rapidly developing field.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Selective Detection of Toxic C1 Chemicals Using a Hydroxylamine- Based Chemiresistive Sensor Array

Mandeep K. Chahal, Masato Sumita, Jan Labuta, Daniel T. Payne, Jonathan P. Hill, Yusuke Yamauchi, Takashi Nakanishi, Takeshi Tanaka, Hiromichi Kataura, Kenji Koga, Hiroyuki Miyamura, Yoshihiro Kon, Dachao Hong, Shinsuke Ishihara

Summary: This study reports a chemiresistive sensor array composed of modified hydroxylamine salts and single-walled carbon nanotubes that can selectively detect formaldehyde vapor. By screening different types of salts, an ideal sensor array has been identified that can clearly discriminate trace amounts of formaldehyde from acetaldehyde. This system offers portable and reliable chemical sensors for advanced environmental monitoring and healthcare applications.

ACS SENSORS (2023)

Article Chemistry, Multidisciplinary

Plasmon-Triggered Ultrafast Operation of Color Centers in Hexagonal Boron Nitride Layers

Vasilios Karanikolas, Takuya Iwasaki, Joel Henzie, Naoki Ikeda, Yusuke Yamauchi, Yutaka Wakayama, Takashi Kuroda, Kenji Watanabe, Takashi Taniguchi

Summary: High-quality emission centers in two-dimensional materials, such as carbon-enriched hexagonal boron nitride (hBN:C) layers, are promising for future photonic and optoelectronic applications. By placing hBN:C layers on Ag triangle nanoparticles (NPs), the decay time of atom-like color-center (CC) defects is accelerated to 46 ps from their bulk value of 350 ps, due to efficient excitation of plasmon modes. Simulations suggest higher Purcell values, and analysis reveals the influence of NP thickness on the Purcell factor of CCs. The ultrafast operation of CCs in hBN:C layers enables their use in demanding applications like single-photon emitters and quantum devices.

ACS OMEGA (2023)

Review Chemistry, Physical

Application of biowaste and nature-inspired (nano)materials in fuel cells

Babak Jaleh, Atefeh Nasri, Mahtab Eslamipanah, Mahmoud Nasrollahzadeh, Jacky H. Advani, Paolo Fornasiero, Manoj B. Gawande

Summary: Industrialization has led to increased demand for clean energy storage and conversion systems to reduce the use of environmentally harmful substances. Nature-inspired materials, with their extended porous architectures, high surface areas, and low cost, show great potential as catalysts and nanofillers in energy storage and conversion. This review summarizes the structure and classification of natural materials suitable for energy devices, focusing on their applications and advancements in fuel cells.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Review Chemistry, Inorganic & Nuclear

Advancement and State-of-art of heterogeneous catalysis for selective CO2 hydrogenation to methanol

Harsh R. Darji, Hanumant B. Kale, Farhan F. Shaikh, Manoj B. Gawande

Summary: This review focuses on the utilization of CO2 for methanol synthesis and various reactor systems. The technology discussed in this review is expected to support and advance research on selective methanol synthesis from CO2 as a fuel, providing sustainable solutions for climate change and rising energy demands.

COORDINATION CHEMISTRY REVIEWS (2023)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)