4.5 Review Book Chapter

Force-Field Parameters from the SAFT-gamma Equation of State for Use in Coarse-Grained Molecular Simulations

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-chembioeng-061312-103314

关键词

fluids; intermolecular potentials; soft matter; molecular dynamics; computer simulation; coarse graining; multiscale modeling

资金

  1. EPSRC [EP/I018212/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/I018212/1] Funding Source: researchfish

向作者/读者索取更多资源

A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-gamma). The accurate SAFT-gamma EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据