4.7 Article

Optimization of calcium-based bioclogging and biocementation of sand

期刊

ACTA GEOTECHNICA
卷 9, 期 2, 页码 277-285

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11440-013-0278-8

关键词

Biocementation; Biogrouting; Bioclogging; Sand

资金

  1. SERC Grant from the Agency for Science, Technology and Research, Singapore [0921420043]
  2. Hohai University, China, under the University Characteristics Project of the Ministry of Education, People Republic of China [Ts2012HHDX029]

向作者/读者索取更多资源

Bioclogging and biocementation can be used to improve the geotechnical properties of sand. These processes can be performed by adsorption of urease-producing bacterial cells on the sand grain surfaces, which is followed by crystallization of calcite produced from the calcium salt and urea solution due to bacterial hydrolysis of urea. In this paper, the effect of intact cell suspension of Bacillus sp. strain VS1, suspension of the washed bacterial cells, and culture liquid without bacterial cells on microbially induced calcite precipitation in sand was studied. The test results showed that adsorption/retention of urease activity on sand treated with washed cells of Bacillus sp. strain VS1 was 5-8 times higher than that treated with culture liquid. The unconfined compressive strength of sand treated with the suspension of washed cells was 1.7 times higher than that treated with culture liquid. This difference could be due to fast inactivation of urease by protease which was present in the culture liquid. The adsorption of bacterial cells on sand pretreated with calcium, aluminum, or ferric salts was 29-37 % higher as compared with that without pretreatment. The permeability of sand varied with the content of precipitated calcium. For bioclogging of sand, the content of precipitated calcium had to be 1.3 % (w/w) or higher. The shear strength of biotreated sand was also dependent on the content of precipitated calcium. To achieve an unconfined compressive strength of 1.5 MPa or higher, the content of precipitated calcium in the treated sand had to be 4.2 % (w/w) or higher. These data can be used as the reference values for geotechnical applications such as bioclogging for reducing the permeability of sand and biocementation for increasing the shear strength of soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据