4.4 Article

The information theoretic interpretation of the length of a curve

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 6, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP06(2015)157

关键词

Gauge-gravity correspondence; AdS-CFT Correspondence

资金

  1. National Science Foundation [PHYS-1066293]
  2. Simons Foundation
  3. CIFAR
  4. FQXi
  5. Canada's NSERC

向作者/读者索取更多资源

In the context of holographic duality with AdS(3) asymptotics, the Ryu-Takayanagi formula states that the entanglement entropy of a subregion is given by the length of a certain bulk geodesic. The entanglement entropy can be operationalized as the entanglement cost necessary to transmit the state of the subregion from one party to another while preserving all correlations with a reference party. The question then arises as to whether the lengths of other bulk curves can be interpreted as entanglement costs for some other information theoretic tasks. Building on recent results showing that the length of more general bulk curves is computed by the differential entropy, we introduce a new task called constrained state merging, whereby the state of the boundary subregion must be transmitted using operations restricted in location and scale in a way determined by the geometry of the bulk curve. Our main result is that the cost to transmit the state of a subregion under the conditions of constrained state merging is given by the differential entropy and hence the signed length of the corresponding bulk curve. When the cost is negative, constrained state merging distills entanglement rather than consuming it. This demon-stration has two parts: first, we exhibit a protocol whose cost is the length of the curve and second, we prove that this protocol is optimal in that it uses the minimum amount of entanglement. In order to complete the proof, we additionally demonstrate that single-shot smooth conditional entropies for intervals in 1+1-dimensional conformal field theories with large central charge are well approximated by their von Neumann counterparts. We also revisit the relationship between the differential entropy and the maximum entropy among locally consistent entropy density operators, demonstrating large quantitative discrepancy between the two quantities in conformal field theories. We conclude with a brief discussion of extensions and lessons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据