4.4 Article

Glueballs as rotating folded closed strings

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2015)011

关键词

Strings and branes phenomenology

资金

  1. Israel Science Foundation [1989/14]
  2. US-Israel bi-national fund (BSF) [2012383]
  3. Germany Israel bi-national fund GIF [I-244-303.7-2013]

向作者/读者索取更多资源

In previous papers [1, 2] we argued that mesons and baryons can be described as rotating open strings in holographic backgrounds. Now we turn to closed strings, which should be the duals of glueballs. We look at the rotating folded closed string in both flat and curved backgrounds. A basic prediction of the closed string model is that the slope of Regge trajectories is half that of open strings. We propose that a simple method to identify glueballs is to look for resonances that belong to trajectories with a slope of approximately 0.45 GeV-2, half the meson slope. We therefore look at the experimental spectra of flavorless light mesons to see if such a scheme, where some of the states are placed on open string trajectories and some on closed ones, can fit known experimental data. We look at the f(0) (J(PC) = 0(++)) and f(2) (2(++)) resonances. As there is no preference for a single scheme of sorting the different states into meson and glueball trajectories, we present several possibilities, each identifying a different state as the glueball. We supplement each scheme with predictions for the masses of excited glueballs. We show that the width of the decay into two mesons is different for glueballs and mesons thus providing a supplementary tool to distinguish between them. In addition, we look at some lattice QCD results for glueball spectra and check their compatibility with the closed string model. One of the main conclusions of this paper is that an extension of experimental data on the spectrum of flavorless hadrons is needed, in particular in the region between around 2.4 GeV and 3 GeV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据