4.5 Article

Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth

期刊

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
卷 26, 期 6, 页码 1053-1057

出版社

SPRINGER
DOI: 10.1007/s11274-009-0269-y

关键词

Desulfovibrio desulfuricans; Chelators; EDDS; HEIDA; Biocide; Glutaraldehyde; THPS

资金

  1. Enhanced Corrosion Prevention, LLC
  2. M. D. Anderson Cancer Center

向作者/读者索取更多资源

Biocides are currently the primary mitigation method to control sulfate-reducing bacteria (SRB) in biofouling, reservoir souring and microbiologically influenced corrosion. Increasingly restrictive environmental regulations and safety concerns on biocide uses demand more efficient dosing of biocides. Chelators have been known to enhance antibiotics because of their properties such as increasing the permeability of the outer cell membrane of Gram-negative bacteria. Two readily biodegradable chelators, ethylenediaminedisuccinate (EDDS) and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA) disodium salts that are touted as potential replacements of ethylenediaminetetraacetic acid (EDTA), were evaluated as potential biocide enhancers for glutaraldehyde and tetrakis hydroxymethyl phosphonium sulfate (THPS) in their inhibition of planktonic SRB growth. Desulfovibrio vulgaris ATCC 7757 and Desulfovibrio desulfuricans ATCC 14563 were grown in modified ATCC 1249 medium and in enriched artificial seawater, respectively. Laboratory tests in 100 ml anaerobic vials showed that EDDS or HEIDA alone did not inhibit SRB growth. However, when EDDS or HEIDA was combined with glutaraldehyde or THPS, each of them enhanced the biocide inhibition of planktonic SRB growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据