4.4 Article

Relative Competitiveness of Protoporphyrinogen Oxidase-Resistant Common Waterhemp (Amaranthus rudis)

期刊

WEED SCIENCE
卷 57, 期 2, 页码 169-174

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1614/WS-08-104.1

关键词

Acetolactate-resistance synthase; herbicide resistance; photosynthesis; protox-inhibitor herbicides; triazine resistance

资金

  1. Syngenta
  2. Kansas Agricultural Experiment Station [08-74-J]

向作者/读者索取更多资源

Research was conducted to determine the competitiveness and fitness of a protoporphyrinogen oxidase (protox)-resistant common waterhemp biotype. Protox-resistant and protox-susceptible biotypes were grown under noncompetitive and competitive arrangements in the greenhouse. In the noncompetitive study, a single plant of each biotype was planted separately in 15-cm-diam pots. Photosynthesis, leaf area, and plant biomass were measured 10, 20, 30, and 40 d after transplanting (DATP). In general, photosynthesis rate and plant biomass were similar between biotypes. However, the protox-resistant biotype had higher leaf area than the susceptible biotype at 20, 30, and 40 DATP. A replacement series study was conducted in the greenhouse to evaluate the relative competitiveness of protox-resistant and protox-susceptible common waterhemp. Photosynthesis, leaf area, plant height, and plant biomass were measured 7, 14, 21, and 28 DATP. Protox-resistant and protox-susceptible common waterhemp were equally competitive 28 DATP. Relative crowding coefficient values 28 DATP were 0.86, 0.89, 1.09, and 1.13 for photosynthesis, leaf area, plant height, and plant biomass, respectively. This suggests protox-resistant and -susceptible common waterhemp were equally competitive and the frequency of protox-resistant biotype is unlikely to decrease in the absence of protox-herbicide selection pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据