4.6 Article

Posture and Activity Recognition and Energy Expenditure Estimation in a Wearable Platform

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2015.2432454

关键词

Energy expenditure; physical activity; shoe sensors; wearable sensors

资金

  1. National Institutes of Health [1R43DK083229, UL 1 TR001082]

向作者/读者索取更多资源

The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here, we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare the use of support vector machines (SVM), multinomial logistic discrimination (MLD), and multilayer perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a 4-h stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (similar to 95%) while reducing the running time and the memory requirements by a factor of >10(3). Comparison of per-minute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE = 0.78 kcal/min for SVM andMLD activity classification, 0.77 kcal/min for MLP versus RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE estimation on a wearable platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据