4.7 Article

Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles

期刊

WEAR
卷 268, 期 3-4, 页码 405-412

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2009.08.031

关键词

Metal matrix composite; Hardness; Sliding wear

向作者/读者索取更多资源

This paper investigates the wear and friction behavior of pure Mg and AZ31 Mg alloy and their composites reinforced with 2 wt.% Al2O3 nano-particles. Wear tests were conducted on as-cast materials using a pin-on-disc configuration under normal stresses of 0.5, 1.0 and 1.5 MPa at sliding speeds of 0.5 and 1.5 m/s for sliding distances up to 2000 m. Sub-surface micro-hardness profiles and hot compression flow curves, measured at temperatures similar to that of the contact surface, were used to investigate the work-hardening behavior of the materials. The lower wear resistance of the monolithic pure Mg and AZ31 magnesium alloy is explained by the work softening due to contact temperature rise. Composite materials, however, showed much lower wear rates mainly due to the strength improvements caused by nanoparticles. Although grain refinement, higher load-bearing capacity, and improved hardness have some contributions to the overall wear resistance, increased work-hardening capacity due to the interaction of dislocations and nano-particles can be considered as the main mechanism improving wear behavior of the present nano-composites. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据