4.5 Article

Unconventional wave reflection due to resonant surface

期刊

WAVE MOTION
卷 50, 期 4, 页码 852-868

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.wavemoti.2013.02.010

关键词

Wave reflection; Resonant surface; Surface impedance; Depolarization; Boundary layer; Homogenization

向作者/读者索取更多资源

This study deals with the reflection phenomena in an elastic half-space on which lies a resonant surface. The resonant surface consists in a 2D periodic repetition of a surface element over which linear oscillators are distributed. Following the homogenization approach developed by Boutin and Roussillon (2006) [1], the periodic distribution of oscillators (1 to 3D sprung-mass) is reduced to a frequency-dependent surface impedance. It is hereby shown that the surface motion comes to zero in the resonating direction around the oscillators' eigenfrequency. Further, the surface impedance may be isotropic or anisotropic, according to the type of oscillator. Thereby unusual free/rigid mixed boundary condition arises, which in turn induces atypical reflected wave fields. The most notable effects are (i) drastic change of P and SV waves conversion, (ii) depolarization of shear waves, (iii) conversion of SH waves into P and SV waves, and (iv) possibility of vanishment of the whole reflected field. The physical insight of the theoretical results is discussed and numerical illustrations are provided. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据