4.5 Article

New insights in the dihydroxybenzenes-driven Fenton reaction: electrochemical study of interaction between dihydroxybenzenes and Fe(III)

期刊

WATER SCIENCE AND TECHNOLOGY
卷 64, 期 10, 页码 2103-2108

出版社

IWA PUBLISHING
DOI: 10.2166/wst.2011.420

关键词

brown rot fungi; cyclic voltammetry; dihydroxybenzenes; Fenton reaction

资金

  1. FONDECYT INICIACION [11090312]
  2. FONDECYT [1070478]

向作者/读者索取更多资源

It has been reported that the dihydroxybenzene (DHB) driven Fenton reaction is more efficient to degrade recalcitrant substrates than the simple Fenton reaction. The enhanced reactivity of the DHB driven Fenton reaction is not clear, but it could be explained by the formation of oxidant species different from the ones formed by classical Fenton reaction or by the shift of the redox potential of the complex formed by DHB and Fe(III). The redox reaction between Fe(III) and the DHBs 1,2-dihydroxybenzene (catechol, CAT), 2,3-dihydroxybenzoic acid (2,3-DHBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), and 1,2-dihydroxy-3,5-benzenedisulfonate (TIRON) was studied by cyclic voltammetry to better understand the enhanced reactivity of the DHB driven Fenton reaction. It was determined that the amount of Fe(II) produced by the redox reaction between Fe(III) and DHBs was insufficient to explain the enhanced reactivity. Cyclic voltammograms (CV) of the DHBs/Fe(III) systems show a quasi-reversible or irreversible behavior and also shifting and splitting the anodic peaks. This effect can be related to DHBs oxidation by Fe(III), but not to a real interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据