4.7 Article

Complexity-based robust hydrologic prediction

期刊

WATER RESOURCES RESEARCH
卷 45, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008WR007524

关键词

-

资金

  1. Utah Water Research Laboratory and the Utah Center for Water Resources Research at Utah State University
  2. U. S. Bureau of Reclamation
  3. Sevier River Water Users Association
  4. U. S. Geological Survey

向作者/读者索取更多资源

Water resource management requires robust assessment of the consequences of future states of the resource, and, when dependent on prediction models, it requires assessment of the uncertainties associated with those predictions. Ensemble prediction/forecast systems have been extensively used to address such issues and seek to provide a collection of predictions, via a collection of parameters, with intent to bracket future observations. However, such methods do not have well-established finite-sample properties and generally require large samples to additionally determine better performing predictions, for example, in nonlinear probabilistic ensemble methods. We here propose a different paradigm, based on Vapnik-Chervonenkis (VC) generalization theory, for robust parameter selection and prediction. It is based on a concept of complexity (that is data-independent) that relates finite sample performance of a model to its performance when a large sample of the same underlying process is available. We employ a nearest neighbor method as the underlying prediction model, introduce a procedure to compute its VC dimension, and test how the two paradigms handle uncertainty in one step ahead daily streamflow prediction for three basins. In both paradigms, the predictions become more efficient and less biased with increasing sample size. However, the complexity-based paradigm has a better bias-variance tradeoff property for small sample sizes. The uncertainty bounds on predictions resulting from ensemble methods behave in an inconsistent manner for smaller basins, suggesting the need for further postprocessing of ensemble members and uncertainty surrounding them before using them in modeling uncertainty estimation. Finally, complexity-based predictions appear to mimic the complexity of the underlying processes via input dimensionality selection of the nearest neighbor model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据