4.7 Article

Multiple stable states in hydrological models: An ecohydrological investigation

期刊

WATER RESOURCES RESEARCH
卷 45, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008WR006886

关键词

-

资金

  1. Australian Research Council [LP04555338]
  2. Murray-Darling Basin Commission
  3. South Australia Department of Water, Land, and Biodiversity Conservation

向作者/读者索取更多资源

Many physical-based models of surface and groundwater hydrology are constructed without the possibility of multiple stable states for the same parameter set. For such a conceptualization, at the cessation of a transient hydrological disturbance of any magnitude the model will return to the same stable state and thus show an infinite resilience. To highlight and falsify this assumption, a numerical distributed ecohydrological model (coupled hillslope Boussinesq-vertically lumped vadose zone) is presented, in which qualitatively different steady state water table elevations exist for the same parameter set. The multiple steady states are shown to emerge from a positive feedback arising from a reduction in leaf area index (LAI) and thus transpiration, as a saline water table approaches the surface. Limit cycle continuation is also undertaken to quantify the state-space location of the threshold (repellor) between the steady states (attractors) and quantify the resilience. While the model is biophysically simple, it is sufficiently complex to challenge this potentially significant assumption within water resource planning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据