4.7 Article

Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

期刊

FRONTIERS IN PLANT SCIENCE
卷 6, 期 -, 页码 -

出版社

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fpls.2015.00254

关键词

BY-2; cell cycle; cell death; checkpoint; DNA damage; ultraviolet-B

资金

  1. Japan Society for the Promotion of Science KAKENHI [26340044, 24770038]
  2. Grants-in-Aid for Scientific Research [15K14536, 24770038, 26340044] Funding Source: KAKEN

向作者/读者索取更多资源

Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress-induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m(-2)) and high-dose UV-B (high UV-B: 2960 J m(-2)) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B-irradiated cells entered mitosis within 12h. Cell cycle progression was gradually restored in low-UV-B-irradiated cells but not in high-UV-B-irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B-induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B-irradiated cells, but remained elevated after 3 days in high-UV-B-irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B-irradiated cells. Our data suggest that low-UV-B-induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B-induced CPDs and/or DNA strand-breaks lead to cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据