4.8 Article

Novel ferromagnetic nanoparticle composited PACls and their coagulation characteristics

期刊

WATER RESEARCH
卷 46, 期 1, 页码 127-135

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.10.025

关键词

Magnetic composited PACl; Magnetic coagulation; Ferromagnetic nanoparticles; Coagulation characteristics; Floc property

资金

  1. Natural Science Foundation of China [50921064, 51025830, 51008293]

向作者/读者索取更多资源

Effects of magnetic nanoparticles on inorganic coagulants and their coagulation performances were studied in the present work. The Fe3O4-SiO2 core-shell particle (FSCSP) and superfine iron (SI), were compounded with polyaluminium chloride of basicity 2.0 (PACl2.0), providing magnetic PACl2.0s (MPACl2.0s). The physiochemical properties of ferromagnetic nanoparticles were investigated using transmission electron microscopy (TEM), the BET method and a zeta potentiometric analyzer. The Al species distributions of the MPACl2.0s and PACl2.0 were examined by liquid Al-27 NMR. Jar tests were employed to evaluate the coagulation performances. Floc properties were assessed by use of the electromotive microscope (EM) and small angle laser light scattering (SALLS). The results showed that modified layers of nanoparticles mitigated agglomeration. FSCSP had a larger specific area and pore volume than SI. The addition of ferromagnetic nanoparticles obviously increased the content of Al-un. MPACl2.0s performed better than PACl2.0 in turbidity removal and DOC removal when dosed less than 0.06 mmol/L as Al. Generally, PACl2.0 + FSCSP (50 mg/L) performed best. Large, loose and weak flocs were produced by MPACl2.0s, which were preferred for the magnetic powder recycling. A plausible structure, Al species-nanoparticles cluster, contributing to the unique properties of MPACl2.0 flocs, was proposed. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据