4.8 Article

Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms

期刊

WATER RESEARCH
卷 45, 期 13, 页码 3899-3907

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.04.048

关键词

Aroclor; Polychlorinated biphenyls; Anaerobic dehalorespiration; Bioaugmentation

资金

  1. Office of Naval Research, U.S. Department of Defense [N000014-03-1-0035, N000014-03-1-0034]
  2. US Department of Defense [ER-1502]

向作者/读者索取更多资源

Bioaugmentation is an attractive mechanism for reducing recalcitrant pollutants in sediments, especially if this technology could be applied in situ. To examine the potential effectiveness of a bioaugmentation strategy for PCB contamination, PCB dehalorespiring populations were inoculated into Baltimore Harbor sediment microcosms. A culture containing the two most predominant indigenous PCB dehalorespiring microorganisms and a culture containing a strain with a rare ortho dechlorination activity and a non-indigenous strain that attacks double-flanked chlorines, were inoculated into sediment microcosms amended with 2,2',3,5,5',6-hexachlorobiphenyl (PCB 151) and Aroclor 1260. Although we observed a similar reduction in the concentration of PCB 151 in all microcosms at day 300, a reduced lag time for dechlorination activity was observed only in the bioaugmented microcosms and the pattern of dechlorination was altered depending on the initial combination of microorganisms added. Dechlorination of Aroclor 1260 was most extensive when dehalorespiring microorganisms were added to sediment. Overall numbers of dehalorespiring microorganisms in both bioaugmented and non-bioaugmented microcosms increased 100- and 1000-fold with PCB 151 and Aroclor 1260, respectively, and they were sustained for the full 300 days of the experiments. The ability of bioaugmentation to redirect dechlorination reactions in the sediment microcosms indicates that the inoculated PCB dehalorespiring microorganisms effectively competed with the indigenous microbial populations and cooperatively enhanced or altered the specific pathways of PCB dechlorination. These observations indicate that bioaugmentation with PCB dehalorespiring microorganisms is a potentially tractable approach for in situ treatment of PCB impacted sites. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据