4.6 Article

Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis

期刊

FRONTIERS IN MICROBIOLOGY
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2015.00790

关键词

biofilm; bpfA; bpfG; bpfD; regulation mechanism; S. oneidensis

资金

  1. National Natural Science Foundation of China [31270097, 41476105, 31100600]
  2. Fundamental Research Funds for the Central Universities [2014FZA6002]
  3. Ministry of Education Science and Technology Development Center [20120541]

向作者/读者索取更多资源

Bacteria switch between two distinct life styles - planktonic (free living) and biofilm forming - in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in Shewanella oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 11 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据