4.5 Article

Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2

期刊

VIROLOGY JOURNAL
卷 6, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1743-422X-6-74

关键词

-

类别

资金

  1. Ministry of Science, Technology and Innovation (MOSTI) of Government of Malaysia [01-02-04-009 BTL/ER/38]
  2. Universiti Putra Malaysia

向作者/读者索取更多资源

Background: Avian influenza viruses (AIV) cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA), neuraminidase (NA), and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles. Results: After four rounds of panning, four different fusion phages were identified. Among the four, the phage displaying the peptide NDFRSKT possessed good anti-viral properties in vitro and in ovo. Further, this peptide inhibited the hemagglutination activity of the viruses but showed very little and no effect on neuraminidase and hemolytic activities respectively. The phage-antibody competition assay proved that the peptide competed with anti-influenza H9N2 antibodies for the binding sites. Based on yeast two-hybrid assay, we observed that the peptide inhibited the viral replication by interacting with the HA protein and this observation was further confirmed by coimmunoprecipitation. Conclusion: Our findings show that we have successfully identified a novel antiviral peptide against avian influenza virus H9N2 which act by binding with the hemagglutination protein of the virus. The broad spectrum activity of the peptide molecule against various subtypes of the avian and human influenza viruses and its comparative efficiency against currently available anti-influenza drugs are yet to be explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据