4.8 Article

Transcription dynamically patterns the meiotic chromosome-axis interface

期刊

ELIFE
卷 4, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.07424

关键词

-

类别

资金

  1. National Institutes of Health (NIH) [R01 GM088248]
  2. March of Dimes Foundation Research Grant [6-FY13-105]
  3. Austrian Science Fund (FWF) [F3405, F3410, W1238-B20]
  4. Charles A. King Trust Postdoctoral Fellowship
  5. Austrian Science Fund (FWF) [W1238] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus chromosome compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation nearby. A separate modulating mechanism that requires the conserved axial-element component Hop1 biases axis protein binding towards small chromosomes. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the axial element to promote recombination while easily adapting to changes in chromosome activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据